MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Control of hypothalamic orexin neurons by acid and CO2
Control of hypothalamic orexin neurons by acid and CO2
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Control of hypothalamic orexin neurons by acid and CO2
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Control of hypothalamic orexin neurons by acid and CO2
Control of hypothalamic orexin neurons by acid and CO2

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Control of hypothalamic orexin neurons by acid and CO2
Control of hypothalamic orexin neurons by acid and CO2
Journal Article

Control of hypothalamic orexin neurons by acid and CO2

2007
Request Book From Autostore and Choose the Collection Method
Overview
Hypothalamic orexin/hypocretin neurons recently emerged as key orchestrators of brain states and adaptive behaviors. They are critical for normal stimulation of wakefulness and breathing: Orexin loss causes narcolepsy and compromises vital ventilatory adaptations. However, it is unclear how orexin neurons generate appropriate adjustments in their activity during changes in physiological circumstances. Extracellular levels of acid and CO 2 are fundamental physicochemical signals controlling wakefulness and breathing, but their effects on the firing of orexin neurons are unknown. Here we show that the spontaneous firing rate of identified orexin neurons is profoundly affected by physiological fluctuations in ambient levels of H + and CO 2 . These responses resemble those of known chemosensory neurons both qualitatively (acidification is excitatory, alkalinization is inhibitory) and quantitatively (≈100% change in firing rate per 0.1 unit change in pH e ). Evoked firing of orexin cells is similarly modified by physiologically relevant changes in pH e : Acidification increases intrinsic excitability, whereas alkalinization depresses it. The effects of pH e involve acid-induced closure of leak-like K + channels in the orexin cell membrane. These results suggest a new mechanism of how orexin/hypocretin networks generate homeostatically appropriate firing patterns. arousal hypocretin hypothalamus pH breathing