Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Improving corn and soybean yield through fertility and weed management practices
by
Mueller, Nathan D
in
Agronomy
/ Plant sciences
2012
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improving corn and soybean yield through fertility and weed management practices
by
Mueller, Nathan D
in
Agronomy
/ Plant sciences
2012
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improving corn and soybean yield through fertility and weed management practices
Dissertation
Improving corn and soybean yield through fertility and weed management practices
2012
Request Book From Autostore
and Choose the Collection Method
Overview
Winter annual weeds (WAW) could affect nitrogen supply for corn production. The objectives of first study were to determine the diversity and abundance of WAW and to evaluate the effect of delaying herbicide applications on nitrogen supply and no-till corn response. Research was conducted in 2010 and 2011 at 14 sites in eastern Kansas. A factorial arrangement of three herbicide application dates (Nov.-Mar., April, and May) and five N rates were used. The three most abundant WAW across sites were henbit, purslane speedwell, and horseweed. Delaying herbicide application until April significantly reduced early corn N uptake by 52 mg N plant-1, chlorophyll meter readings at silking by 3.4%, and grain yield by 0.48 Mg ha-1 across sites. An additional 16 to 17 kg N ha-1 was needed to maintain yield if herbicide application was delayed until April. Starter and foliar micronutrient fertilization can potentially increase corn and soybean yield. The objectives of the second study were to evaluate crop response from combinations of starter and foliar fertilizers that contain N-P-K mixtures with and without a blend of micronutrients at four sites for each crop under irrigated conditions. No early corn growth or yield increase was attributed to application of micronutrients (Fe, Mn, Zn, Cu, and B) beyond what was achieved with N-P-K starter fertilization. There was an increase in soybean height (8 cm) and yield (293 kg ha-1) with starter fertilizer containing N-P-K plus micronutrients over the control. No increase in corn or soybean yield was obtained with foliar fertilization. The objective of the third study was to compare soil mobility and changes in soybean nutrient concentration in the leaf and seed from Mn and Zn sources (EDTA and oxysulfate) at two sites. Zinc sources were more mobile in the soil. Both Zn sources increased seed Zn concentration. Manganese oxysulfate increased seed Mn concentration. However, soybean trifoliolate leaf and seed Mn concentration decreased with soil-applied Na2EDTA and MnEDTA. This response was attributed to formation of FeEDTA and increased Fe supply that reduced root Mn absorption. Manganese EDTA is not recommended for soil application.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9781267885029, 1267885025
This website uses cookies to ensure you get the best experience on our website.