Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Combinatorial Growth with Physical Constraints: Evidence from Electronic Miniaturization
by
Azar, Pablo
in
Economic growth
/ GDP
/ Gross Domestic Product
/ Growth models
/ Productivity
/ Transistors
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Combinatorial Growth with Physical Constraints: Evidence from Electronic Miniaturization
by
Azar, Pablo
in
Economic growth
/ GDP
/ Gross Domestic Product
/ Growth models
/ Productivity
/ Transistors
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Combinatorial Growth with Physical Constraints: Evidence from Electronic Miniaturization
Paper
Combinatorial Growth with Physical Constraints: Evidence from Electronic Miniaturization
2021
Request Book From Autostore
and Choose the Collection Method
Overview
In the past sixty years, transistor sizes and weights have decreased by 50 percent every eighteen months, following Moore’s Law. Smaller and lighter electronics have increased productivity in virtually every industry and spurred the creation of entirely new sectors of the economy. However, while the effect of the increasing quality of computers and electronics on GDP has been widely studied, the question of how electronic miniaturization affects economic growth has been unexplored. To quantify the effect of electronic miniaturization on GDP, this paper builds an economic growth model that incorporates physical constraints on firms’ production sets. This model allows for new types of productivity spillovers that are driven by products’ physical characteristics. Not only are there spillovers from changes in industry productivity, but also, there can be “size spillovers,” where the miniaturization of one industry’s product leads to miniaturization of products that are downstream in the supply chain, reflecting how transistor miniaturization has led to the decrease in size of a large variety of electronic products. Using a new data set of product weights and sizes, we test the predictions of the model and show that Moore’s Law accounts for approximately 3.5 percent of all productivity growth in the 1982-2007 period, and for 37.5 percent of the productivity growth in heavy manufacturing industries. The results are robust under multiple specifications, and increase in strength during the 1997-2007 subperiod.
Publisher
Federal Reserve Bank of St. Louis
Subject
This website uses cookies to ensure you get the best experience on our website.