MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
Paper

Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers

2023
Request Book From Autostore and Choose the Collection Method
Overview
We show how factoring the RNN-T's output distribution can significantly reduce the computation cost and power consumption for on-device ASR inference with no loss in accuracy. With the rise in popularity of neural-transducer type models like the RNN-T for on-device ASR, optimizing RNN-T's runtime efficiency is of great interest. While previous work has primarily focused on the optimization of RNN-T's acoustic encoder and predictor, this paper focuses the attention on the joiner. We show that despite being only a small part of RNN-T, the joiner has a large impact on the overall model's runtime efficiency. We propose to utilize HAT-style joiner factorization for the purpose of skipping the more expensive non-blank computation when the blank probability exceeds a certain threshold. Since the blank probability can be computed very efficiently and the RNN-T output is dominated by blanks, our proposed method leads to a 26-30% decoding speed-up and 43-53% reduction in on-device power consumption, all the while incurring no accuracy degradation and being relatively simple to implement.
Publisher
Cornell University Library, arXiv.org

MBRLCatalogueRelatedBooks