MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations
Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations
Paper

Orchestration Framework for Open System Models with Autonomous RISs and Oblivious Base Stations

2024
Request Book From Autostore and Choose the Collection Method
Overview
Autonomous reconfigurable intelligent surface (RIS) offers the potential to simplify deployment by reducing the need for real-time remote control between a base station (BS) and an RIS. However, we highlight two major challenges posed by autonomy. The first is implementation complexity, as autonomy requires hybrid RISs (HRISs) equipped with additional on-board hardware to monitor the propagation environment and conduct local channel estimation (CHEST), a process known as probing. The second challenge, termed probe distortion, reflects a form of the observer effect: during probing, an HRIS can inadvertently alter the propagation environment, potentially disrupting the operations of other communicating devices. While implementation complexity has been extensively studied, probe distortion remains largely unexplored. To further assess the potential of autonomous RISs, this paper comprehensively and pragmatically studies fundamental trade-offs posed by these challenges. We examine the robustness of an HRIS-assisted massive multiple-input multiple-output (mMIMO) system under minimal design choices that reflect the essential elements and stringent conditions, including (a) two extremes of implementation complexity realized through minimalist operational designs of two HRIS hardware architectures, and (b) an oblivious BS that fully embraces probe distortion. To make our analysis possible, we propose a physical-layer orchestration framework that aligns HRIS and mMIMO operations. We provide empirical evidence showing that autonomous RIS holds promise even under these strict conditions and propose new research directions, particularly for advancing the understanding of probe distortion.
Publisher
Cornell University Library, arXiv.org