Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Weighted Projective Hypersurfaces with Extreme Invariants
by
Esser, Louis Franklin
in
Mathematics
/ Theoretical Mathematics
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Weighted Projective Hypersurfaces with Extreme Invariants
by
Esser, Louis Franklin
in
Mathematics
/ Theoretical Mathematics
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dissertation
Weighted Projective Hypersurfaces with Extreme Invariants
2023
Request Book From Autostore
and Choose the Collection Method
Overview
The goal of this dissertation is to study weighted projective hypersurfaces and their application to optimization problems in algebraic geometry. First, we generalize and strengthen several well-known results on the automorphisms of hypersurfaces due to Grothendieck-Lefschetz and Matsumura-Monsky to the weighted setting. Then, we construct special examples of weighted projective hypersurfaces with extreme properties. These are used to prove strong asymptotics on certain invariants from birational geometry as dimension increases. In particular, we show that the minimum volume of smooth varieties of general type approaches zero doubly exponentially with dimension; we also show that the index of mildly singular Calabi-Yau varieties can grow doubly exponentially with dimension. For several classes of varieties, we conjecture the optimal bounds on volume or index in every dimension; these conjectures are supported by low-dimensional evidence.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9798379617080
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.