MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Kainate receptors and synaptic plasticity
Kainate receptors and synaptic plasticity
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Kainate receptors and synaptic plasticity
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Kainate receptors and synaptic plasticity
Kainate receptors and synaptic plasticity

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Kainate receptors and synaptic plasticity
Kainate receptors and synaptic plasticity
Journal Article

Kainate receptors and synaptic plasticity

2000
Request Book From Autostore and Choose the Collection Method
Overview
Bortolotto et al . 1 report that the kainate subtype of glutamate receptor is essential for the plasticity of certain types of synaptic transmission in the brain, which is of interest as these receptors were previously not thought to initiate plastic processes. In particular, a new antagonist (LY382884) was shown to act selectively against the GluR5 type of kainate receptor: in the presence of LY382884, which reduces kainate-receptor-mediated postsynaptic responses by ∼40%, long-term potentiation (LTP) at hippocampal mossy-fibre synapses could no longer be induced 1 . Here we argue that the available evidence does not support a major role for kainate receptors in the induction of mossy-fibre LTP.