Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
19,958
result(s) for
"A. Hamed"
Sort by:
The resource theory of stabilizer quantum computation
by
Hamed Mousavian, S A
,
Veitch, Victor
,
Gottesman, Daniel
in
Computation
,
Distillation
,
Entanglement
2014
Recent results on the non-universality of fault-tolerant gate sets underline the critical role of resource states, such as magic states, to power scalable, universal quantum computation. Here we develop a resource theory, analogous to the theory of entanglement, that is relevant for fault-tolerant stabilizer computation. We introduce two quantitative measures-monotones-for the amount of non-stabilizer resource. As an application we give absolute bounds on the efficiency of magic state distillation. One of these monotones is the sum of the negative entries of the discrete Wigner representation of a quantum state, thereby resolving a long-standing open question of whether the degree of negativity in a quasi-probability representation is an operationally meaningful indicator of quantum behavior.
Journal Article
Evaluation of queen cell acceptance and royal jelly production between hygienic and non-hygienic honey bee (Apis mellifera) colonies
2022
Honey bees are crucial for pollination services globally and produce important hive products including honey, royal jelly, pollen, and propolis that are being used commercially in food, cosmetics, and alternative medicinal purposes. Among the bee products, royal jelly (RJ) has long attracted scientists’ interest because of its importance in honey caste differentiation. The present research was carried out to determine the acceptance rate of queen cells, and RJ production between the hygienic and non-hygienic lines. Further, this study unveils the effect of pollen substitute diets on the queen cell acceptance rate and RJ yields between both bee stocks. Results showed that the uncapped brood cells and dead brood’s removal percentage was significantly more in hygienic bee colonies in comparison to non-hygienic bee colonies (p < 0.05). The average percentage of larval acceptance was statistically higher in hygienic lines (64.33 ± 2.91%) compared to non-hygienic lines (29.67 ± 1.20%). Similarly, the RJ mean weight per colony differed statistically between both bee stocks (p<0.001), which were 12.23 ± 0.52 g and 6.72 ± 0.33 g, respectively. Moreover, our results demonstrated that a significant difference was observed in larval acceptance rate, RJ yields (per colony and per cup) between both bee stocks those fed on various diets. However, no significant difference was recorded in RJ yields (per colony and per cup) between both bee stock that feeds on either commercially available pollen or pollen substitute. This study may provide future applications in helping bee breeders to choose the bees that carry a higher level of hygienic behavior with high RJ production traits.
Journal Article
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
2025
Background
Bacterial cellulose (BC) is a nanofibrils macromolecule that possesses unique properties and versatile applications in various fields. For commercial production, agro-industrial wastes were used as sustainable and cost effective alternative sources. Annually, a great amount of frying oil wastes are produced worldwide and disposed illegally resulting in huge environmental disasters. In this regard, the study aimed to investigate the effect of different concentration and increasing doses of gamma irradiation on the potential utilization of emulsified FOW as carbon source for BC production. In addition to tracking the behavior of SCOBY and BCM formation process in the presence of FOW.
Methodology
The effect of different factors including; concentrations of FOW, incubation period emulsification ratios and gamma irradiation on BC production were investigated and estimated gravimetrically. In addition, the manner of the cellulose membrane formation was closely tracked and was documented by photos.
Results
The data proved that the symbiotic culture (SCOBY), has the ability to utilize frying oil wastes as a sole carbon source. Addition of 1% FOW resulted in (12.1%) increasing the BCM dry weight (2.81 to 3.15 gL- 1 in SWM, while the addition of 1% of the emulsified oil (FOW/E) recording (32.6%) increase in BC dry weight compared with control (5.33 and 4.02 gL- 1, respectively). Further increase in FOW/E concentration (> 2–5%) resulted in a significant gradual decreases (39%) in BC dry weight (from 5.33 to 3.25 gL- 1). Whereas, increasing the incubation period (21- days) resulted in a significant increase in BCM dry weight from 3.79 to 5.32 gL- 1 (40.4%). The effect of gamma irradiation (0–50 kGy) of FOW/E showed an increase in BCM dry weight (2.5%) at dose 10 kGy, while recorded (34.1%) increase compared with control (without FOW). The critical moments of SCOBY while struggling for surviving to gain the oxygen and nutrients required for BC biosynthesis in the presence of FOW have been documented photographically.
Conclusion
The present study positively contributes to the field of BC biosynthesis, where the FOW was added to the other agro-industrial wastes as a source of carbon for BC production, in addition to its potential application in the future in bioremediation for controlling environmental pollution.
Journal Article
Intrusion detection systems for IoT-based smart environments: a survey
by
Elrawy, Mohamed Faisal
,
Ali Ismail Awad
,
Hamed, Hesham F A
in
Architecture
,
Cybersecurity
,
Internet of Things
2018
One of the goals of smart environments is to improve the quality of human life in terms of comfort and efficiency. The Internet of Things (IoT) paradigm has recently evolved into a technology for building smart environments. Security and privacy are considered key issues in any real-world smart environment based on the IoT model. The security vulnerabilities in IoT-based systems create security threats that affect smart environment applications. Thus, there is a crucial need for intrusion detection systems (IDSs) designed for IoT environments to mitigate IoT-related security attacks that exploit some of these security vulnerabilities. Due to the limited computing and storage capabilities of IoT devices and the specific protocols used, conventional IDSs may not be an option for IoT environments. This article presents a comprehensive survey of the latest IDSs designed for the IoT model, with a focus on the corresponding methods, features, and mechanisms. This article also provides deep insight into the IoT architecture, emerging security vulnerabilities, and their relation to the layers of the IoT architecture. This work demonstrates that despite previous studies regarding the design and implementation of IDSs for the IoT paradigm, developing efficient, reliable and robust IDSs for IoT-based smart environments is still a crucial task. Key considerations for the development of such IDSs are introduced as a future outlook at the end of this survey.
Journal Article
Experimental and numerical optimization of pressurized air vessel performance for water hammer mitigation
2025
Controlling water hammer pressure is essential, necessitates a transient surge analysis to identify critical pressure points along a pipeline system. A pressurized air vessel is a pressure control device used to control both positive and negative pressure fluctuations. This study investigates three key parameters that affect the sizing of the pressurized air vessel: orifice diameter (the throttling aperture), the vessel diameter, and water volume fraction ratio. A mathematical model, developed using the FORTRAN programming language and based on the unsteady one-dimensional momentum and continuity equations, determines the optimal sizing of these parameters. These equations are solved using the method of characteristics, and the pressurized air vessel is mathematically modelled as a quasi-one-dimensional flow system. An experimental test rig, equipped with a rapid closing solenoid valve and pressure sensors, is used to validate the mathematical model results. Both the experimental and numerical results demonstrate the effectiveness of the pressurized air vessel to dampen water hammer pressure. The findings indicate that the throttling action has a significant effect on the required size of the pressurized air vessel. This study presents a novel approach that provides quantitative insights into key parameters that affect the performance of the pressurized air vessel by using the combined modelling and experimental validation. The orifice diameter is the most influential parameter on the water hammer head, vessel air head, and water level inside the vessel.
Journal Article
Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications
2021
Due to their versatile applications, ZnONPs have been formulated by several approaches, including green chemistry methods. In the current study, convenient and economically viable ZnONPs were produced using
Elaeagnus angustifolia
(EA) leaf extracts. The phytochemicals from
E. angustifolia
L. are believed to serve as a non-toxic source of reducing and stabilizing agents. The physical and chemical properties of ZnONPs were investigated employing varying analytical techniques (UV, XRD, FT-IR, EDX, SEM, TEM, DLS and Raman). Strong UV–Vis absorption at 399 nm was observed for green ZnONPs. TEM, SEM and XRD analyses determined the nanoscale size, morphology and crystalline structure of ZnONPs, respectively. The ZnONPs were substantiated by evaluation using HepG2 (IC
50
: 21.7 µg mL
−1
) and HUH7 (IC
50
: 29.8 µg mL
−1
) cancer cell lines and displayed potential anticancer activities. The MTT cytotoxicity assay was conducted using
Leishmania tropica
“KWH23” (promastigotes: IC
50
, 24.9 µg mL
−1
; and amastigotes: IC
50
, 32.83 µg mL
−1
). ZnONPs exhibited excellent antimicrobial potencies against five different bacterial and fungal species via the disc-diffusion method, and their MIC values were calculated. ZnONPs were found to be biocompatible using human erythrocytes and macrophages. Free radical scavenging tests revealed excellent antioxidant activities. Enzyme inhibition assays were performed and revealed excellent potential. These findings suggested that EA@ZnONPs have potential applications and could be used as a promising candidate for clinical development.
Journal Article
Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells
2024
Breast cancer therapy options are limited due to its late diagnosis and poor prognosis. Doxorubicin is the fundamental therapy approach for this disease. Because chemotherapy has numerous adverse effects, the scope of the existing research was to appraise the synergetic effect of doxorubicin and naringin and explore the underlying mechanism. The cytotoxicity of doxorubicin and naringin on MCF-7 was monitored. Furthermore, the expression of STAT3 and JAK1 as well as the apoptotic and metastatic related genes (Bax, Bcl-2, Survivin, and VEGF) were conducted by immunoblotting assay and qRT-PCR. In addition, a wound healing test was utilized to appraise the migration and metastasis of MCF-7. Our results revealed that naringin and doxorubicin had a synergetic inhibitory influence on MCF-7 cells growth and migration. The synergetic action of doxorubicin and naringin effectively hindered the expression of STAT3, JAK1, Bcl-2, Survivin, and VEGF, with a boost in the level of Bax compared to cells treated with either doxorubicin or naringin. In conclusion, our findings imply that combining doxorubicin with naringin may be a favorable strategy for inhibiting the growth of breast cancer.
Journal Article
Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants
2020
Grafting is a common practice for vegetative propagation and trait improvement in horticultural plants. A general prerequisite for successful grafting and long term survival of grafted plants is taxonomic proximity between the root stock and scion. For the success of a grafting operation, rootstock and scion should essentially be closely related. Interaction between the rootstock and scion involves complex physiological-biochemical and molecular mechanisms. Successful graft union formation involves a series of steps viz., lining up of vascular cambium, generation of a wound healing response, callus bridge formation, followed by vascular cambium formation and subsequent formation of the secondary xylem and phloem. For grafted trees compatibility between the rootstock/scion is the most essential factor for their better performance and longevity. Graft incompatibility occurs on account of a number of factors including of unfavorable physiological responses across the graft union, transmission of virus or phytoplasma and anatomical deformities of vascular tissue at the graft junction. In order to avoid the incompatibility problems, it is important to predict the same at an early stage. Phytohormones, especially auxins regulate key events in graft union formation between the rootstock and scion, while others function to facilitate the signaling pathways. Transport of macro as well as micro molecules across long distances results in phenotypic variation shown by grafted plants, therefore grafting can be used to determine the pattern and rate of recurrence of this transport. A better understanding of rootstock scion interactions, endogenous growth substances, soil or climatic factors needs to be studied, which would facilitate efficient selection and use of rootstocks in the future. Protein, hormones, mRNA and small RNA transport across the junction is currently emerging as an important mechanism which controls the stock/scion communication and simultaneously may play a crucial role in understanding the physiology of grafting more precisely. This review provides an understanding of the physiological, biochemical and molecular basis underlying grafting with special reference to horticultural plants.
Journal Article
Biogenic selenium nanoparticles and selenium/chitosan-Nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential
by
Hassan, Mervat G.
,
El-Shora, Hamed M.
,
Hamed, Ahmed A.
in
Acids
,
Anti-infective agents
,
Anti-Infective Agents - pharmacology
2024
Background
As antibiotics and chemotherapeutics are no longer as efficient as they once were, multidrug resistant (MDR) pathogens and cancer are presently considered as two of the most dangerous threats to human life. In this study, Selenium nanoparticles (SeNPs) biosynthesized by
Streptomyces parvulus
MAR4, nano-chitosan (NCh), and their nanoconjugate (Se/Ch-nanoconjugate) were suggested to be efficacious antimicrobial and anticancer agents.
Results
SeNPs biosynthesized by
Streptomyces parvulus
MAR4 and NCh were successfully achieved and conjugated. The biosynthesized SeNPs were spherical with a mean diameter of 94.2 nm and high stability. Yet, Se/Ch-nanoconjugate was semispherical with a 74.9 nm mean diameter and much higher stability. The SeNPs, NCh, and Se/Ch-nanoconjugate showed significant antimicrobial activity against various microbial pathogens with strong inhibitory effect on their tested metabolic key enzymes [phosphoglucose isomerase (PGI), pyruvate dehydrogenase (PDH), glucose-6-phosphate dehydrogenase (G6PDH) and nitrate reductase (NR)]; Se/Ch-nanoconjugate was the most powerful agent. Furthermore, SeNPs revealed strong cytotoxicity against HepG2 (IC
50
= 13.04 μg/ml) and moderate toxicity against Caki-1 (HTB-46) tumor cell lines (IC
50
= 21.35 μg/ml) but low cytotoxicity against WI-38 normal cell line (IC
50
= 85.69 μg/ml). Nevertheless, Se/Ch-nanoconjugate displayed substantial cytotoxicity against HepG2 and Caki-1 (HTB-46) with IC
50
values of 11.82 and 7.83 μg/ml, respectively. Consequently, Se/Ch-nanoconjugate may be more easily absorbed by both tumor cell lines. However, it exhibited very low cytotoxicity on WI-38 with IC
50
of 153.3 μg/ml. Therefore, Se/Ch-nanoconjugate presented the most anticancer activity.
Conclusion
The biosynthesized SeNPs and Se/Ch-nanoconjugate are convincingly recommended to be used in biomedical applications as versatile and potent antimicrobial and anticancer agents ensuring notable levels of biosafety, environmental compatibility, and efficacy.
Journal Article