Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
36
result(s) for
"Bai, Wubin"
Sort by:
Materials for flexible bioelectronic systems as chronic neural interfaces
2020
Engineered systems that can serve as chronically stable, high-performance electronic recording and stimulation interfaces to the brain and other parts of the nervous system, with cellular-level resolution across macroscopic areas, are of broad interest to the neuroscience and biomedical communities. Challenges remain in the development of biocompatible materials and the design of flexible implants for these purposes, where ulimate goals are for performance attributes approaching those of conventional wafer-based technologies and for operational timescales reaching the human lifespan. This Review summarizes recent advances in this field, with emphasis on active and passive constituent materials, design architectures and integration methods that support necessary levels of biocompatibility, electronic functionality, long-term stable operation in biofluids and reliability for use in vivo. Bioelectronic systems that enable multiplexed electrophysiological mapping across large areas at high spatiotemporal resolution are surveyed, with a particular focus on those with proven chronic stability in live animal models and scalability to thousands of channels over human-brain-scale dimensions. Research in materials science will continue to underpin progress in this field of study.
This Review provides an overview of the advances in materials and device design that are enabling the realization of implantable electronic interfaces for long-term, multiplexed recording and stimulation of the brain and nervous system.
Journal Article
Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics
2018
Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.
Journal Article
Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery
2020
The rigidity and relatively primitive modes of operation of catheters equipped with sensing or actuation elements impede their conformal contact with soft-tissue surfaces, limit the scope of their uses, lengthen surgical times and increase the need for advanced surgical skills. Here, we report materials, device designs and fabrication approaches for integrating advanced electronic functionality with catheters for minimally invasive forms of cardiac surgery. By using multiphysics modelling, plastic heart models and Langendorff animal and human hearts, we show that soft electronic arrays in multilayer configurations on endocardial balloon catheters can establish conformal contact with curved tissue surfaces, support high-density spatiotemporal mapping of temperature, pressure and electrophysiological parameters and allow for programmable electrical stimulation, radiofrequency ablation and irreversible electroporation. Integrating multimodal and multiplexing capabilities into minimally invasive surgical instruments may improve surgical performance and patient outcomes.
Soft multilayer electronic arrays on endocardial balloon catheters allow for multiplexed high-density spatiotemporal sensing and actuation, as shown in perfused ex vivo hearts.
Journal Article
Skin-inspired, sensory robots for electronic implants
2024
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Integrating sensing and actuation capabilities in soft robots is crucial for advancements in medical diagnostics and targeted therapies. Zhang et al. developed bio-inspired sensory robots with multifunctionality for minimally invasive medical procedures.
Journal Article
Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues
2021
Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic–tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.
A functional interfacial material has been developed for soft integration of bioelectronic devices with biological tissues. This has been applied in battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy as well as wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays.
Journal Article
Digital automation of transdermal drug delivery with high spatiotemporal resolution
2024
Transdermal drug delivery is of vital importance for medical treatments. However, user adherence to long-term repetitive drug delivery poses a grand challenge. Furthermore, the dynamic and unpredictable disease progression demands a pharmaceutical treatment that can be actively controlled in real-time to ensure medical precision and personalization. Here, we report a spatiotemporal on-demand patch (SOP) that integrates drug-loaded microneedles with biocompatible metallic membranes to enable electrically triggered active control of drug release. Precise control of drug release to targeted locations (<1 mm
2
), rapid drug release response to electrical triggers (<30 s), and multi-modal operation involving both drug release and electrical stimulation highlight the novelty. Solution-based fabrication ensures high customizability and scalability to tailor the SOP for various pharmaceutical needs. The wireless-powered and digital-controlled SOP demonstrates great promise in achieving full automation of drug delivery, improving user adherence while ensuring medical precision. Based on these characteristics, we utilized SOPs in sleep studies. We revealed that programmed release of exogenous melatonin from SOPs improve sleep of mice, indicating potential values for basic research and clinical treatments.
Microneedle patches that can actively address individual needles are challenging to realize. Here, the authors introduce a spatiotemporal on-demand patch for precise and personalized drug delivery, utilizing electrically triggered control with drug-loaded microneedles and biocompatible metallic membranes.
Journal Article
Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries
2021
Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.
Uninterrupted monitoring of pressure and temperature at skin interfaces can help to minimize the potential for pressure injuries in hospitalized or bedridden patients. Here, the authors introduce a soft, skin-mountable sensor that can continuously provide readings via antennas mounted under bedding, and demonstrate the functionality and robustness of the devices on patients.
Journal Article
Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants
by
Wang, Xinlong
,
Ameer, Guillermo A.
,
Luan, Haiwen
in
639/166/987
,
639/301/1005/1009
,
639/4077/4072/4062
2019
Piezoelectric microsystems are of use in areas such as mechanical sensing, energy conversion and robotics. The systems typically have a planar structure, but transforming them into complex three-dimensional (3D) frameworks could enhance and extend their various modes of operation. Here, we report a controlled, nonlinear buckling process to convert lithographically defined two-dimensional patterns of electrodes and thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems. To illustrate the engineering versatility of the approach, we create more than twenty different 3D geometries. With these structures, we then demonstrate applications in energy harvesting with tailored mechanical properties and root-mean-square voltages ranging from 2 mV to 790 mV, in multifunctional sensors for robotic prosthetic interfaces with improved responsivity (for example, anisotropic responses and sensitivity of 60 mV N
−1
for normal force), and in bio-integrated devices with in vivo operational capabilities. The 3D geometries, especially those with ultralow stiffnesses or asymmetric layouts, yield unique mechanical attributes and levels of functionality that would be difficult or impossible to achieve with conventional two-dimensional designs.
Nonlinear buckling processes can be used to transform thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems with applications in energy harvesting, multifunctional sensing and bio-integrated devices.
Journal Article
Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts
2022
Continuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O
2
-sensing probes, and fluorine magnetic resonance imaging methods are limited by their intermittent measurements, requirements for skilled personnel, indirect interfaces, and/or their tethered connections. This paper reports a wireless, miniaturized, minimally invasive near-infrared spectroscopic system designed for uninterrupted monitoring of local-tissue oxygenation. A bioresorbable barbed structure anchors the probe stably at implantation sites for a time period matched to the clinical need, with the ability for facile removal afterward. The probe connects to a skin-interfaced electronic module for wireless access to essential physiological parameters, including local tissue oxygenation, pulse oxygenation, and heart rate. In vitro tests and in vivo studies in porcine flap and kidney models demonstrate the ability of the system to continuously measure oxygenation with high accuracy and sensitivity.
Although continuous monitoring of tissue oxygenation is critically important after tissue/organ graft procedures, current technologies have key limitations. Here, the authors develop a miniaturized, minimally invasive, self-anchoring optical probe and demonstrate continuous monitoring of oxygenation in porcine flap and organ models.
Journal Article
High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems
2022
Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.
Designing and manufacturing eco/bioresorbable electronic systems remains a challenge. The authors introduce a picosecond-pulsed laser-based scheme that exploits controlled patterning, thinning, and/or cutting to manipulate multilayers of eco/bioresorbable materials for a wide range of advanced electronic systems.
Journal Article