Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
485 result(s) for "Chollet, M."
Sort by:
Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5
Femtosecond X-ray diffraction and ab initio density functional theory calculations are used to determine the crystal structure of YBa 2 Cu 3 O 6.5 undergoing optically driven, nonlinear lattice excitation above the transition temperature of 52 kelvin, under which conditions the electronic structure of the material changes in such a way as to favour superconductivity. Structure of superconducting YBa 2 Cu 3 O 6+ x Andrea Cavalleri and colleagues use femtosecond X-ray diffraction measurements and ab initio density functional theory calculations to determine the crystal structure of YBa 2 Cu 3 O 6+ x undergoing optically driven, nonlinear lattice excitation at 100 kelvin. In this exotic non-equilibrium state, the electronic structure of the material changes in such a way as to favour superconductivity. The results reveal that in the driven state the superconducting planes are displaced closer and away from one another in a staggered manner, explaining how superconducting coupling can be enhanced or reduced, inside and between the bilayers. Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures 1 , 2 , 3 . In complex oxides, this method has been used to melt electronic order 4 , 5 , 6 , drive insulator-to-metal transitions 7 and induce superconductivity 8 . Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa 2 Cu 3 O 6+ x (refs 9 , 10 ). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa 2 Cu 3 O 6+ x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu–O 2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O–Cu–O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.
Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers
Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a ‘measure-and-sort’ approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100–200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ∼6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution. By taking advantage of free-carrier generation in optically transparent media researchers have improved synchronization between optical lasers and free-electron laser pulses. This technique has an optical/X-ray delay with a sub-10 fs r.m.s error.
A time-dependent order parameter for ultrafast photoinduced phase transitions
The temporal dynamics of phase transitions in strongly correlated states of matter are often dictated by the interplay between structural and electronic degrees of freedom. These are now probed in a perovskite manganite using an X-ray free-electron laser, and found to be well described by a single order parameter. Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams 1 , 2 . For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 . Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent ‘order parameter’ that depends exclusively on the electronic excitation.
Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals
Key insights into the behavior of materials can be gained by observing their structure as they undergo lattice distortion. Laser pulses on the femtosecond time scale can be used to induce disorder in a \"pump-probe\" experiment with the ensuing transients being probed stroboscopically with femtosecond pulses of visible light, x-rays, or electrons. Here we report three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser, providing insights into the physics of this phenomenon. Our results allow comparison and confirmation of predictive models based on continuum elasticity theory and molecular dynamics simulations.
The origin of incipient ferroelectricity in lead telluride
The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV–VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instability and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties. Group IV–VI materials often exist in a state near an electronic or structural phase transition. Here, the authors use ultrafast X-ray scattering to show that coupling of band-edge electrons and phonons causes the ferroelectric instability observed in lead telluride.
Identification and evaluation of Pharmacological enhancers of the factor VII p.Q160R variant
Congenital factor (F) VII deficiency is caused by mutations in the F7 gene. The p.Q160R variant manifests with bleeding episodes due to reduced FVII activity and antigen in patient plasma, most likely caused by protein misfolding and intracellular retention. As current replacement therapy is expensive and requires frequent intravenous injections, there is an unmet need for new and less invasive therapeutic strategies. Drug repurposing allows for rapid, more cost-effective discovery and implementation of new treatments, and identification of pharmacological enhancers of FVII variant activity would be of clinical importance. High-throughput screening of > 1800 FDA-approved drugs identified the orally available histone deacetylase inhibitor abexinostat and the inhaled surfactant tyloxapol as enhancers of FVII p.Q160R variant activity. The positive hits were verified in an in vitro cell model transiently expressing wild type or variant FVII and ex vivo in patients’ plasma. Both drugs showed a dose-response effect on FVII antigen and activity levels in conditioned cell medium and on FVII activity in patients’ plasma. In conclusion, the efficacy of the FDA-approved drugs abexinostat and tyloxapol in enhancing FVII variant activity constitute a proof of principle for high-throughput identification of drugs that may be feasible for novel treatment of FVII deficiency.
Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material
The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott–Hubbard material V 2 O 3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a 1 g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A 1 g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron–lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems. Ultrafast photoexcitation stabilizes new states of matter with rich out-of-equilibrium behaviours. Here, Lantz et al . report a transient non-thermal phase developing immediately after photoexcitation in V 2 O 3 , shedding a light on optical manipulation of strongly correlated systems.
Enhanced charge density wave with mobile superconducting vortices in La1.885Sr0.115CuO4
Superconductivity in the cuprates is found to be intertwined with charge and spin density waves. Determining the interactions between the different types of order is crucial for understanding these important materials. Here, we elucidate the role of the charge density wave (CDW) in the prototypical cuprate La 1.885 Sr 0.115 CuO 4 , by studying the effects of large magnetic fields ( H ) up to 24 Tesla. At low temperatures ( T ), the observed CDW peaks reveal two distinct regions in the material: a majority phase with short-range CDW coexisting with superconductivity, and a minority phase with longer-range CDW coexisting with static spin density wave (SDW). With increasing magnetic field, the CDW first grows smoothly in a manner similar to the SDW. However, at high fields we discover a sudden increase in the CDW amplitude upon entering the vortex-liquid state. Our results signify strong coupling of the CDW to mobile superconducting vortices and link enhanced CDW amplitude with local superconducting pairing across the H  −  T phase diagram. Superconductivity in the cuprates is known to be intertwined with charge and spin density waves. Here, the authors study the prototypical cuprate La 1.885 Sr 0.115 CuO 4 via x-ray scattering and discover a sudden increase in the charge-density-wave amplitude upon entering the superconducting-vortex-liquid state at high magnetic field.
Femtosecond control of phonon dynamics near a magnetic order critical point
The spin-phonon interaction in spin density wave (SDW) systems often determines the free energy landscape that drives the evolution of the system. When a passing energy flux, such as photoexcitation, drives a crystalline system far from equilibrium, the resulting lattice displacement generates transient vibrational states. Manipulating intermediate vibrational states in the vicinity of the critical point, where the SDW order parameter changes dramatically, would then allow dynamical control over functional properties. Here we combine double photoexcitation with an X-ray free-electron laser (XFEL) probe to control and detect the lifetime and magnitude of the intermediate vibrational state near the critical point of the SDW in chromium. We apply Landau theory to identify the mechanism of control as a repeated partial quench and sub picosecond recovery of the SDW. Our results showcase the capabilities to influence and monitor quantum states by combining multiple optical photoexcitations with an XFEL probe. They open new avenues for manipulating and researching the behaviour of photoexcited states in charge and spin order systems near the critical point. Precise control of vibrational states coupled to electronic degrees of freedom could enable control over charge or magnetic order in a material. Here, the authors use a double-pulse photoexcitation combined with an X-ray probe to control vibrational states near the critical point of spin density wave in Cr films.
Direct characterization of photoinduced lattice dynamics in BaFe2As2
Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe 2 As 2 . On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A 1 g mode that modulates the Fe–As–Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. In BaFe 2 As 2 , the lattice couples strongly to the magnetic and electronic degrees of freedom, providing a way to control them. Here, by means of time-resolved X-ray scattering, the authors measure rapid lattice oscillations, which can induce changes in the material’s electronic and magnetic properties.