Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"Cox, Kara"
Sort by:
A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein
2019
Respiratory syncytial virus (RSV) infection is the leading cause of hospitalization and infant mortality under six months of age worldwide; therefore, the prevention of RSV infection in all infants represents a significant unmet medical need. Here we report the isolation of a potent and broadly neutralizing RSV monoclonal antibody derived from a human memory B-cell. This antibody, RB1, is equipotent on RSV A and B subtypes, potently neutralizes a diverse panel of clinical isolates in vitro and demonstrates in vivo protection. It binds to a highly conserved epitope in antigenic site IV of the RSV fusion glycoprotein. RB1 is the parental antibody to MK-1654 which is currently in clinical development for the prevention of RSV infection in infants.
Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization. Here, the authors isolate a human monoclonal antibody that binds to a highly conserved epitope on the RSV fusion protein, neutralizes RSV A and B subtypes equipotently and is protective in the cotton rat model.
Journal Article
Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection
by
Freed, Daniel C.
,
Ciaramella, Giuseppe
,
DiStefano, Daniel J.
in
631/250/590
,
631/326/590/2293
,
631/326/596
2020
The RSV Fusion (F) protein is a target for neutralizing antibody responses and is a focus for vaccine discovery; however, the process of RSV entry requires F to adopt a metastable prefusion form and transition to a more stable postfusion form, which displays less potent neutralizing epitopes. mRNA vaccines encode antigens that are translated by host cells following vaccination, which may allow conformational transitions similar to those observed during natural infection to occur. Here we evaluate a panel of chemically modified mRNA vaccines expressing different forms of the RSV F protein, including secreted, membrane associated, prefusion-stabilized, and non-stabilized structures, for conformation, immunogenicity, protection, and safety in rodent models. Vaccination with mRNA encoding native RSV F elicited antibody responses to both prefusion- and postfusion-specific epitopes, suggesting that this antigen may adopt both conformations in vivo. Incorporating prefusion stabilizing mutations further shifts the immune response toward prefusion-specific epitopes, but does not impact neutralizing antibody titer. mRNA vaccine candidates expressing either prefusion stabilized or native forms of RSV F protein elicit robust neutralizing antibody responses in both mice and cotton rats, similar to levels observed with a comparable dose of adjuvanted prefusion stabilized RSV F protein. In contrast to the protein subunit vaccine, mRNA-based vaccines elicited robust CD4+ and CD8+ T-cell responses in mice, highlighting a potential advantage of the technology for vaccines requiring a cellular immune response for efficacy.
Journal Article
Respiratory syncytial virus elicits enriched CD8+ T lymphocyte responses in lung compared with blood in African green monkeys
2017
Respiratory syncytial virus (RSV) is a leading cause of serious lower respiratory tract disease in young children and older adults throughout the world. Prevention of severe RSV disease through active immunization is optimal but no RSV vaccine has been licensed so far. Immune mechanisms of protection against RSV infection in humans have not been fully established, thus a comprehensive characterization of virus-specific immune responses in a relevant animal model will be beneficial in defining correlates of protection. In this study, we infected juvenile naive AGMs with RSV A2 strain and longitudinally assessed virus-specific humoral and cellular immune responses in both peripheral blood and the respiratory tract. RSV viral loads at nasopharyngeal surfaces and in the lung peaked at around day 5 following infection, and then largely resolved by day 10. Low levels of neutralizing antibody titers were detected in serum, with similar kinetics as RSV fusion (F) protein-binding IgG antibodies. RSV infection induced CD8+, but very little CD4+, T lymphocyte responses in peripheral blood. Virus-specific CD8+ T cell frequencies were ~10 fold higher in bronchoaveolar lavage (BAL) compared to peripheral blood and exhibited effector memory (CD95+CD28-) / tissue resident memory (CD69+CD103+) T (TRM) cell phenotypes. The kinetics of virus-specific CD8+ T cells emerging in peripheral blood and BAL correlated with declining viral titers, suggesting that virus-specific cellular responses contribute to the clearance of RSV infection. RSV-experienced AGMs were protected from subsequent exposure to RSV infection. Additional studies are underway to understand protective correlates in these seropositive monkeys.
Journal Article
Profiling of hMPV F-specific antibodies isolated from human memory B cells
by
Tang, Aimin
,
Eddins, Michael J.
,
Sullivan, Nicole L.
in
631/250/2152/2153/1291
,
631/250/255/2514
,
631/326/596/2553
2022
Human metapneumovirus (hMPV) belongs to the
Pneumoviridae
family and is closely related to respiratory syncytial virus (RSV). The surface fusion (F) glycoprotein mediates viral fusion and is the primary target of neutralizing antibodies against hMPV. Here we report 113 hMPV-F specific monoclonal antibodies (mAbs) isolated from memory B cells of human donors. We characterize the antibodies’ germline usage, epitopes, neutralization potencies, and binding specificities. We find that unlike RSV-F specific mAbs, antibody responses to hMPV F are less dominant against the apex of the antigen, and the majority of the potent neutralizing mAbs recognize epitopes on the side of hMPV F. Furthermore, neutralizing epitopes that differ from previously defined antigenic sites on RSV F are identified, and multiple binding modes of site V and II mAbs are discovered. Interestingly, mAbs that bind preferentially to the unprocessed prefusion F show poor neutralization potency. These results elucidate the immune recognition of hMPV infection and provide novel insights for future hMPV antibody and vaccine development.
Here, Xiao
et al
. isolate a large panel of antibodies against human metapneumovirus fusion protein from human B cells, and characterize their epitopes, neutralization activities, and antigen binding specificity, providing a useful framework for understanding the immune response against hMPV.
Journal Article
A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens
by
Gindy, Marian
,
Casimiro, Danilo R.
,
Swaminathan, Gokul
in
Adjuvant
,
Adjuvants, Immunologic - administration & dosage
,
agonists
2016
Sub-unit vaccines are primarily designed to include antigens required to elicit protective immune responses and to be safer than whole-inactivated or live-attenuated vaccines. But their purity and inability to self-adjuvant often result in weaker immunogenicity. Emerging evidence suggests that bio-engineered nanoparticles can be used as immunomodulatory adjuvants. Therefore, in this study we explored the potential of novel Merck-proprietary lipid nanoparticle (LNP) formulations to enhance immune responses to sub-unit viral antigens. Immunization of BALB/c and C57BL/6 mice revealed that LNPs alone or in combination with a synthetic TLR9 agonist, immune-modulatory oligonucleotides, IMO-2125 (IMO), significantly enhanced immune responses to hepatitis B virus surface antigen (HBsAg) and ovalbumin (OVA). LNPs enhanced total B-cell responses to both antigens tested, to levels comparable to known vaccine adjuvants including aluminum based adjuvant, IMO alone and a TLR4 agonist, 3-O-deactytaled monophosphoryl lipid A (MPL). Investigation of the quality of B-cell responses demonstrated that the combination of LNP with IMO agonist elicited a stronger Th1-type response (based on the IgG2a:IgG1 ratio) than levels achieved with IMO alone. Furthermore, the LNP adjuvant significantly enhanced antigen specific cell-mediated immune responses. In ELISPOT assays, depletion of specific subsets of T cells revealed that the LNPs elicited potent antigen-specific CD4+ and CD8+T cell responses. Intracellular FACS analyses revealed that LNP and LNP+IMO formulated antigens led to higher frequency of antigen-specific IFNγ+TNFα+IL-2+, multi-functional CD8+T cell responses, than unadjuvanted vaccine or vaccine with IMO only. Overall, our results demonstrate that lipid nanoparticles can serve as future sub-unit vaccine adjuvants to boost both B-cell and T-cell responses in vivo, and that addition of IMO can be used to manipulate the quality of immune responses.
Journal Article
Pneumococcal Vaccine Breakthrough and Failure in Infants and Children: A Narrative Review
by
Banniettis, Natalie
,
Buchwald, Ulrike
,
McIntosh, E. David
in
breakthrough
,
Children
,
Comorbidity
2023
Globally, Streptococcus pneumoniae is a leading cause of vaccine-preventable morbidity and mortality in infants and children. In recent decades, large-scale pediatric immunization programs have substantially reduced the incidence of invasive pneumococcal disease. Despite this, residual vaccine-type pneumococcal disease remains in the form of vaccine breakthrough and vaccine failure. This targeted literature review aims to discuss aspects of vaccine breakthrough and failure in infants and children, including disease epidemiology, clinical presentation, risk factors, vaccination schedules, vaccine serotypes, correlates of protection, comorbidities, disease surveillance, and potential implications for future vaccine development.
Journal Article
Characterization of humoral and cell-mediated immunity induced by mRNA vaccines expressing influenza hemagglutinin stem and nucleoprotein in mice and nonhuman primates
2022
In response to immune pressure, influenza viruses evolve, producing drifted variants capable of escaping immune recognition. One strategy for inducing a broad-spectrum immune response capable of recognizing multiple antigenically diverse strains is to target conserved proteins or protein domains. To that end, we assessed the efficacy and immunogenicity of mRNA vaccines encoding either the conserved stem domain of a group 1 hemagglutinin (HA), a group 2 nucleoprotein (NP), or a combination of the two antigens in mice, as well as evaluated immunogenicity in naïve and influenza seropositive nonhuman primates (NHPs). HA stem-immunized animals developed a robust anti-stem antibody binding titer, and serum antibodies recognized antigenically distinct group 1 HA proteins. These antibodies showed little to no neutralizing activity in vitro but were active in an assay measuring induction of antibody-dependent cellular cytotoxicity. HA-directed cell-mediated immunity was weak following HA stem mRNA vaccination; however, robust CD4 and CD8 T cell responses were detected in both mice and NHPs after immunization with mRNA vaccines encoding NP. Both HA stem and NP mRNA vaccines partially protected mice from morbidity following lethal influenza virus challenge, and superior efficacy against two different H1N1 strains was observed when the antigens were combined. In vivo T cell depletion suggested that anti-NP cell-mediated immunity contributed to protection in the mouse model. Taken together, these data show that mRNA vaccines encoding conserved influenza antigens, like HA stem and NP in combination, induce broadly reactive humoral responses as well as cell-mediated immunity in mice and NHPs, providing protection against homologous and heterologous influenza infection in mice.
Journal Article
A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates
by
Casimiro, Danilo R.
,
Swaminathan, Gokul
,
Thoryk, Elizabeth A.
in
13/21
,
13/31
,
631/250/255/2514
2016
Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in
Rhesus macaques
, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP’s ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.
Journal Article
A phase I study to evaluate safety, pharmacokinetics, and pharmacodynamics of respiratory syncytial virus neutralizing monoclonal antibody MK‐1654 in healthy Japanese adults
by
Luzelena Caro
,
Kara S. Cox
,
Katsukuni Fujimoto
in
Adult
,
Antibodies, Monoclonal
,
Antibodies, Monoclonal, Humanized
2022
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among all infants worldwide and remains a significant cause of morbidity and mortality. To address this unmet medical need, MK‐1654, a half‐life extended RSV neutralizing monoclonal antibody, is in clinical development for the prevention of RSV disease in infants. This was a phase I, randomized, placebo‐controlled, single‐site, double‐blind trial of MK‐1654 in 44 healthy Japanese adults. The safety, tolerability, pharmacokinetics, antidrug antibodies (ADAs), and serum neutralizing antibody (SNA) titers against RSV were evaluated for 1 year after a single intramuscular (i.m.) or intravenous (i.v.) dose of MK‐1654 or placebo in five groups (100 mg i.m., 300 mg i.m., 300 mg i.v., 1000 mg i.v., or placebo). MK‐1654 was generally well‐tolerated in Japanese adults. There were no serious drug‐related adverse events (AEs) reported in any MK‐1654 recipient and no discontinuations due to any AEs in the study. The half‐life of MK‐1654 ranged from 76 to 91 days across dosing groups. Estimated bioavailability was 86% for 100 mg i.m. and 77% for 300 mg i.m. One participant out of 33 (3.0%) developed detectable ADA with no apparent associated AEs. The RSV SNA titers increased in a dose‐dependent manner among participants who received MK‐1654. These data support the development of MK‐1654 for use in Japanese infants.
Journal Article
Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice
2016
A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs) markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg) and Ovalbumin (OVA), respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA) to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.
Journal Article