Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Hertlein, Tobias"
Sort by:
Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants
Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus . Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. The role played by human protein TLR2 in inflammation and sepsis varies for different bacterial pathogens. Here, Hanzelmann et al . show that the differential abilities of Staphylococcus aureus strains to activate TLR2 depend on their production of peptides that release lipoproteins known to act as TLR2 agonists.
Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S . aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S . aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S . aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S . aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S . aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.
Novel Small-Molecule Hybrid-Antibacterial Agents against S. aureus and MRSA Strains
Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.
MRSA Infection in the Thigh Muscle Leads to Systemic Disease, Strong Inflammation, and Loss of Human Monocytes in Humanized Mice
MRSA (Methicillin-resistant Staphylococcus aureus ) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of “humanized” mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)- scid IL2R γ null mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or “murinized” mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches.
MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels
The mechanisms behind carbon dioxide (CO 2 ) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO 2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta- mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter. The mechanisms behind CO 2 dependency in non-autotrophic bacterial isolates are unclear. Here the authors show that the Staphylococcus aureus mpsAB operon is crucial for growth at atmospheric CO 2 levels, and provide evidence indicating that MpsAB represents a bicarbonate concentrating system.
Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes
Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.
The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells
All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.
Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection
Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD- scid IL2Rg null ) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus , we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rg null -3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus : although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms.
Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus
Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.
Novel Effective Fluorinated Benzothiophene-Indole Hybrid Antibacterials against S. aureus and MRSA Strains
Increasing antibacterial drug resistance threatens global health, unfortunately, however, efforts to find novel antibacterial agents have been scaled back by the pharmaceutical industry due to concerns about a poor return on investment. Nevertheless, there is an urgent need to find novel antibacterial compounds to combat antibacterial drug resistance. The synthesis of novel drugs from natural sources is mostly cost-intensive due to those drugs’ complicated structures. Therefore, it is necessary to find novel antibacterials by simple synthesis to become more attractive for industrial production. We succeeded in the discovery of four antibacterial compound (sub)classes accessible in a simple one-pot reaction based on fluorinated benzothiophene-indole hybrids. They have been evaluated against various S. aureus and MRSA strains. Structure- and substituent-dependent activities have been found within the (sub)classes and promising lead compounds have been identified. In addition, bacterial pyruvate kinase was found to be the molecular target of the active compounds. In conclusion, simple one-pot synthesis of benzothiophene-indoles represents a promising strategy for the search of novel antimicrobial compounds.