Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
192
result(s) for
"Kaminski, Michael M"
Sort by:
Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors
by
Pichler, Roman
,
Arnold, Sebastian J.
,
Engel, Hannes
in
631/136/142
,
631/136/334/1874/345
,
631/136/334/1874/761
2016
Direct reprogramming by forced expression of transcription factors can convert one cell type into another. Thus, desired cell types can be generated bypassing pluripotency. However, direct reprogramming towards renal cells remains an unmet challenge. Here, we identify renal cell fate-inducing factors on the basis of their tissue specificity and evolutionarily conserved expression, and demonstrate that combined expression of
Emx2
,
Hnf1b
,
Hnf4a
and
Pax8
converts mouse and human fibroblasts into induced renal tubular epithelial cells (iRECs). iRECs exhibit epithelial features, a global gene expression profile resembling their native counterparts, functional properties of differentiated renal tubule cells and sensitivity to nephrotoxic substances. Furthermore, iRECs integrate into kidney organoids and form tubules in decellularized kidneys. Our approach demonstrates that reprogramming factors can be identified by targeted
in silico
analysis. Renal tubular epithelial cells generated
ex vivo
by forced expression of transcription factors may facilitate disease modelling, drug and nephrotoxicity testing, and regenerative approaches.
Kaminski
et al.
demonstrate that combined expression of the transcription factors Emx2, Hnf1b, Hnf4a and Pax8 converts mouse and human fibroblasts into induced renal tubular epithelial cells.
Journal Article
CRISPR-based diagnostics
2021
The accurate and timely diagnosis of disease is a prerequisite for efficient therapeutic intervention and epidemiological surveillance. Diagnostics based on the detection of nucleic acids are among the most sensitive and specific, yet most such assays require costly equipment and trained personnel. Recent developments in diagnostic technologies, in particular those leveraging clustered regularly interspaced short palindromic repeats (CRISPR), aim to enable accurate testing at home, at the point of care and in the field. In this Review, we provide a rundown of the rapidly expanding toolbox for CRISPR-based diagnostics, in particular the various assays, preamplification strategies and readouts, and highlight their main applications in the sensing of a wide range of molecular targets relevant to human health.
This Review summarizes the rapidly expanding toolbox of assays for CRISPR-based diagnostics and highlights their point-of-care applications.
Journal Article
Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs)
2018
Fibroblasts can be directly reprogrammed to induced renal tubular epithelial cells (iRECs) using four transcription factors. These engineered cells may be used for disease modeling, cell replacement therapy or drug and toxicity testing. Direct reprogramming induces drastic changes in the transcriptional landscape, protein expression, morphological and functional properties of cells. However, how the metabolome is changed by reprogramming and to what degree it resembles the target cell type remains unknown. Using untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-MS, we characterized the metabolome of mouse embryonic fibroblasts (MEFs), iRECs, mIMCD-3 cells, and whole kidneys. Metabolic fingerprinting can distinguish each cell type reliably, revealing iRECs are most similar to mIMCD-3 cells and clearly separate from MEFs used for reprogramming. Treatment with the cytotoxic drug cisplatin induced typical changes in the metabolic profile of iRECs commonly occurring in acute renal injury. Interestingly, metabolites in the medium of iRECs, but not of mIMCD-3 cells or fibroblast could distinguish treated and non-treated cells by cluster analysis. In conclusion, direct reprogramming of fibroblasts into renal tubular epithelial cells strongly influences the metabolome of engineered cells, suggesting that metabolic profiling may aid in establishing iRECs as
in vitro
models for nephrotoxicity testing in the future.
Journal Article
Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs
2022
CRISPR-based diagnostics enable specific sensing of DNA and RNA biomarkers associated with human diseases. This is achieved through the binding of guide RNAs to a complementary sequence that activates Cas enzymes to cleave reporter molecules. Currently, most CRISPR-based diagnostics rely on target preamplification to reach sufficient sensitivity for clinical applications. This limits quantification capability and adds complexity to the reaction chemistry. Here we show the combination of a CRISPR–Cas-based reaction with a nanozyme-linked immunosorbent assay, which allows for the quantitative and colorimetric readout of Cas13-mediated RNA detection through catalytic metallic nanoparticles at room temperature (CrisprZyme). We demonstrate that CrisprZyme is easily adaptable to a lateral-flow-based readout and different Cas enzymes and enables the sensing of non-coding RNAs including microRNAs, long non-coding RNAs and circular RNAs. We utilize this platform to identify patients with acute myocardial infarction and to monitor cellular differentiation in vitro and in tissue biopsies from prostate cancer patients. We anticipate that CrisprZyme will serve as a universally applicable signal catalyst for CRISPR-based diagnostics, which will expand the spectrum of targets for preamplification-free, quantitative detection.The combination of catalytic platinum particles, nanozymes and a CRISPR-based reaction allows for the quantification of non-coding RNAs at the picomolar range. This assay, CrisprZyme, has a colorimetric readout and works at room temperature without preamplification.
Journal Article
Impact of Diabetic Stress Conditions on Renal Cell Metabolome
by
Pichler, Roman
,
Huber, Tobias B.
,
Kammerer, Bernd
in
Albumin
,
albumin stress
,
Aldo-keto reductase
2019
Diabetic kidney disease is a major complication in diabetes mellitus, and the most common reason for end-stage renal disease. Patients suffering from diabetes mellitus encounter glomerular damage by basement membrane thickening, and develop albuminuria. Subsequently, albuminuria can deteriorate the tubular function and impair the renal outcome. The impact of diabetic stress conditions on the metabolome was investigated by untargeted gas chromatography–mass spectrometry (GC-MS) analyses. The results were validated by qPCR analyses. In total, four cell lines were tested, representing the glomerulus, proximal nephron tubule, and collecting duct. Both murine and human cell lines were used. In podocytes, proximal tubular and collecting duct cells, high glucose concentrations led to global metabolic alterations in amino acid metabolism and the polyol pathway. Albumin overload led to the further activation of the latter pathway in human proximal tubular cells. In the proximal tubular cells, aldo-keto reductase was concordantly increased by glucose, and partially increased by albumin overload. Here, the combinatorial impact of two stressful agents in diabetes on the metabolome of kidney cells was investigated, revealing effects of glucose and albumin on polyol metabolism in human proximal tubular cells. This study shows the importance of including highly concentrated albumin in in vitro studies for mimicking diabetic kidney disease.
Journal Article
A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection
2020
In organ transplantation, infection and rejection are major causes of graft loss. They are linked by the net state of immunosuppression. To diagnose and treat these conditions earlier, and to improve long-term patient outcomes, refined strategies for the monitoring of patients after graft transplantation are needed. Here, we show that a fast and inexpensive assay based on CRISPR–Cas13 accurately detects BK polyomavirus DNA and cytomegalovirus DNA from patient-derived blood and urine samples, as well as
CXCL9
messenger RNA (a marker of graft rejection) at elevated levels in urine samples from patients experiencing acute kidney transplant rejection. The assay, which we adapted for lateral-flow readout, enables—via simple visualization—the post-transplantation monitoring of common opportunistic viral infections and of graft rejection, and should facilitate point-of-care post-transplantation monitoring.
A fast and inexpensive point-of-care assay based on CRISPR–Cas13 accurately detects the DNA of opportunistic viruses in blood and urine samples as well as an mRNA marker of renal transplant rejection in urine samples.
Journal Article
Engineering kidney cells: reprogramming and directed differentiation to renal tissues
by
Pichler, Roman
,
Kaminski, Michael M.
,
Lienkamp, Soeren S.
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2017
Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.
Journal Article
In vivo base editing reduces liver cysts in autosomal dominant polycystic kidney disease
2025
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic kidney disorder, affecting over 10 million individuals worldwide. Cystic expansion typically progresses to kidney failure and also involves the liver with limited treatment options. Pathogenic variants in
or
account for 85-90% of cases. Genetic re-expression of
or
has been shown to partially reverse key characteristics of the disease phenotype in mice. Despite advancements in the understanding of the genetic basis, it remains unclear whether the correction of underlying pathogenic variants can effectively prevent, modify, or reverse the disease. Additionally, the feasibility of extrinsically delivered genome editing as a treatment option for ADPKD remains largely unexplored. In this study, we employed CRISPR base editing to correct a spectrum of representative pathogenic
variants selected from a patient cohort achieving precise and efficient editing
. Correction of a representative murine missense variant (c.6646C>T (R2216W)) in primary renal epithelial cells successfully increased polycystin-1 expression and reduced levels of the endoplasmic reticulum stress marker sXBP1.
, base editor delivery to the c.6646C>T (R2216W) knock-in mouse enabled correction of the pathogenic variant, resulting in a significant reduction in liver cysts. These findings provide the first evidence of ADPKD reversibility through genome editing, opening promising novel therapeutic perspectives for affected patients and their families.
Journal Article
Synthetic genetic circuits to uncover and enforce the OCT4 trajectories of successful reprogramming of human fibroblasts
2023
Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications.Competing Interest StatementThe authors have declared no competing interest.
Kidney-specific Wdr72 deletion leads to incomplete distal renal tubular acidosis through impaired V-ATPase B1 subunit localization
2025
Distal renal tubular acidosis (dRTA) is a rare kidney disorder characterized by impaired urinary acidification due to defective proton secretion in type A intercalated cells of the collecting duct. Recently, pathogenic variants in the human gene encoding the WD Repeat Domain 72 protein (WDR72) have been reported in patients with dRTA, yet the physiological role of WDR72 in the kidney remains unknown.
To elucidate the renal function of Wdr72, we generated a kidney-specific knockout mouse model (Wdr72fl/fl;Pax8-Cre+) and assessed acid–base homeostasis under baseline, acute, and chronic acid loading.
Wdr72fl/fl;Pax8-Cre+ mice displayed persistently elevated urinary pH, reduced titratable acid and net acid excretion under basal and acid-loaded conditions, consistent with incomplete dRTA. While the systemic pH remained unchanged compared to controls under standard diet, chronic acid load led to mild hyperchloremic, hypokalemic metabolic acidosis. Notably, urinary NH₄⁺ excretion was increased upon acid loading accompanied by upregulation of key ammoniagenesis enzymes, which was detected even under basal conditions, consistent with a compensatory activation of proximal tubular acid excretion pathways. The total and membranous abundance of the V-ATPase B1 subunit decreased markedly within the kidney, despite unchanged transcript levels, suggesting a defect in V-ATPase trafficking or assembly. In addition, morphometric analyses revealed an increased proportion of type A intercalating cells that failed to expand upon acid loading, indicating defective adaptive plasticity.
Kidney-specific Wdr72 deletion impairs distal urinary acidification through reduced V-ATPase abundance and membranous targeting, altered intercalated cell morphology, and limited adaptive remodeling, resulting in incomplete dRTA. Upregulation of renal ammoniagenesis partially compensates the acidification defect. These findings highlight WDR72 as a key regulator of distal nephron acid–base homeostasis and offer mechanistic insight into WDR72-associated dRTA.
Kidney-specific deletion of Wdr72 reduced Atp6v1b1 membranous localization in intercalated cells.
Kidney-specific Wdr72 knockout altered intercalated cell morphology, and limited their adaptive remodeling.
The lack of the renal Wdr72 resulted in incomplete dRTA, compensated partially by elevated ammoniagenesis.