Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Pancer, Zeev"
Sort by:
Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey
Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans (jawless fish) and of immunoglobulin gene segments in gnathostomes (jawed vertebrates).
Dynamic Expression of Multiple Scavenger Receptor Cysteine-Rich Genes in Coelomocytes of the Purple Sea Urchin
Coelomocytes, the heterogeneous population of sea urchin putative immune cells, were found to express a complex set of transcripts featuring scavenger receptor cysteine-rich (SRCR) repeats. SRCR domains define a metazoan superfamily of proteins, many of which are implicated in development and regulation of the immune system of vertebrates. Coelomocytes transcribe multiple SRCR genes from among a multigene family encoding an estimated number of 1,200 SRCR domains in specific patterns particular to each individual. Transcription levels for given SRCR genes may range from pronounced to undetectable, yet all tested animals harbor the genomic loci encoding these genes. Analysis of several SRCR genes revealed multiple loci corresponding to each type. In the case of one SRCR type, a cluster of at least three genes was detected within a 133-kb bacterial artificial chromosome insert, and conserved as well as unique regions were identified in sequences of three genomic clones derived from a single animal. Array hybridizations with repeated samples of coelomocyte messages revealed substantial alterations in levels of expression of many SRCR genes, with fluctuations of up to 10-fold in 1 week and up to 30-fold over a period of 3 months. This report is the first demonstration of genomic and transcriptional complexity in molecules expressed by invertebrate coelomocytes. The mechanisms controlling SRCR gene expression and the functional significance of this dynamic system await elucidation.
Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase
The variable lymphocyte receptors (VLRs) of jawless vertebrates such as lamprey and hagfish are composed of highly diverse modular leucine-rich repeats. Each lymphocyte assembles a unique VLR by rearrangement of the germline gene. In the lamprey genome, we identify here about 850 distinct cassettes encoding leucine-rich repeat modules that serve as sequence templates for the hypervariable VLR repertoires. The data indicate a gene conversion–like process in VLR diversification. Genomic analysis suggested a link between the VLR and platelet glycoprotein receptors. Lamprey lymphocytes express two putative deaminases of the AID-APOBEC family that may be involved in VLR diversification, as indicated by in vitro mutagenesis and recombination assays. Vertebrate acquired immunity could have therefore originated from lymphocyte receptor diversification by an ancestral AID-like DNA cytosine deaminase.
Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate
Instead of the immunoglobulin-type antigen receptors of jawed vertebrates, jawless fish have variable lymphocyte receptors (VLRs), which consist of leucine-rich repeat (LRR) modules. Somatic diversification of the VLR gene is shown here to occur through a multistep assembly of LRR modules randomly selected from a large bank of flanking cassettes. The predicted concave surface of the VLR is lined with hypervariable positively selected residues, and computational analysis suggests a repertoire of about 10¹⁴ unique receptors. Lamprey immunized with anthrax spores responded with the production of soluble antigen-specific VLRs. These findings reveal that two strikingly different modes of antigen recognition through rearranged lymphocyte receptors have evolved in the jawless and jawed vertebrates.
Variable Lymphocyte Receptors in Hagfish
A previously uncharacterized type of variable lymphocyte receptors (VLR) was identified recently in the Sea lamprey. This jawless vertebrate generates an extensive VLR repertoire through differential insertion of neighboring diverse leucine-rich repeat (LRR) cassettes into an incomplete germ-line VLR gene. We report here VLR homologs from two additional lamprey species and the presence of two types of VLR genes in hagfish, the only other order of contemporary jawless vertebrates. As in the Sea lamprey, the incomplete hagfish germ-line VLR-A and -B genes are modified in lymphocyte-like cells to generate highly diverse repertoires of VLR-A and -B proteins via a presently undetermined mechanism. This jawless-fish mode of VLR diversification starkly contrasts with the rearrangement of Ig V(D)J gene segments used by all jawed vertebrates to produce diverse repertoires of T and B lymphocyte antigen receptors. The development of two very different strategies for receptor diversification at the dawn of vertebrate evolution ≈500 million years ago attests to the fitness value of a lymphocyte-based system of anticipatory immunity.
High-affinity lamprey VLRA and VLRB monoclonal antibodies
Lamprey are members of the ancestral vertebrate taxon (jawless fish), which evolved rearranging antigen receptors convergently with the jawed vertebrates. But instead of Ig superfamily domains, lamprey variable lymphocyte receptors (VLRs) consist of highly diverse leucine-rich repeats. Although VLRs represent the only known adaptive immune system not based on Ig, little is known about their antigen-binding properties. Here we report robust plasma VLRB responses of lamprey immunized with hen egg lysozyme and β-galactosidase (β-gal), demonstrating adaptive immune responses against soluble antigens. To isolate monoclonal VLRs, we constructed large VLR libraries from antigen-stimulated and naïve animals in a novel yeast surface-display vector, with the VLR C-terminally fused to the yeast Flo1p surface anchor. We cloned VLRB binders of lysozyme, β-gal, cholera toxin subunit B, R-phycoerythrin, and B-trisaccharide antigen, with dissociation constants up to the single-digit picomolar range, equivalent to those of high-affinity IgG antibodies. We also isolated from a single lamprey 13 anti-lysozyme VLRA clones with affinities ranging from low nanomolar to mid-picomolar. All of these VLRA clones were closely related in sequence, differing at only 15 variable codon positions along the 244-residue VLR diversity region, which augmented antigen-binding affinity up to 100-fold. Thus, VLRs can provide a protective humoral antipathogen shield. Furthermore, the broad range of nominal antigens that VLRs can specifically bind, and the affinities achieved, indicate a functional parallelism between LRR-based and Ig-based antibodies. VLRs may be useful natural single-chain alternatives to conventional antibodies for biotechnology applications.
structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey
Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called \"variable lymphocyte receptors\" (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like γδ T-cell receptors (TCRs) but unlike αβ TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus, these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and γδ TCRs, and the exclusive expression on the lymphocyte surface that is unique to αβ and γδ TCRs.
Prototypic T Cell Receptor and CD4-Like Coreceptor Are Expressed by Lymphocytes in the Agnathan Sea Lamprey
All jawed vertebrates have highly diverse lymphocyte receptors, which allow discrimination between self and nonself antigens as well as the recognition of potential pathogens. Key elements of the anticipatory recombinatorial immune system in jawed vertebrates are the TCR, Ig, and MHC genes, but their ancestral genes have not been found in more basal vertebrates. In this study, we extended our analysis of the transcriptome of lymphocyte-like cells in the lamprey to identify the TCR-like and CD4-like genes. The structural features of these genes and their preferential expression in lymphocytes make them attractive candidates for ancestral TCR and CD4 genes. The TCR-like gene contains both V (variable) and J (joining) sequences in its first exon and exists as a single-copy gene that is invariant. Thus, the TCR-like gene account account for the receptor diversity that is required for the immune responses reported for lamprey, but it could have been easily modified to serve as an evolutionary precursor of modern TCR and Ig genes.
Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes
Echinoderms share common ancestry with the chordates within the deuterostome clade. Molecular features that are shared between their immune systems and that of mammals thus illuminate the basal genetic framework on which these immune systems have been constructed during evolution. The immune effector cells of sea urchins are the coelomocytes, whose primary function is protection against invasive marine pathogens; here we identify six genes expressed in coelomocytes, homologues of which are also expressed in cells of the mammalian immune system. Three coelomocyte genes reported here encode transcription factors. These are an NFKB homologue (SpNFKB); a GATA-2/3 homologue (SpGATAc); and a runt domain factor (SpRunt-1). All three of these coelomocyte genes respond sharply to bacterial challenge: SpNFKB and SpRunt-1 genes are rapidly up-regulated, while transcripts of SpGATAc factor disappear within hours of injection of bacteria. Sham injection also activates SpNFKB and SpRunt, though with slower kinetics, but does not affect SpGATAc levels. Another gene, SpHS, encodes a protein related to the signal transduction intermediate HS1 of lymphoid cells. Two other newly discovered genes, SpSRCR1 and SpSRCR5, encode proteins featuring SRCR repeats. These genes are members of a complex family of SRCR genes all expressed specifically in coelomocytes. The SRCR repeats most closely resemble those of mammalian macrophage scavenger receptors. Remarkably, each individual sea urchin expresses a specific pattern of SRCR genes. Our results imply some shared immune functions and more generally, a shared regulatory architecture which underlies immune system gene expression in all deuterostomes. We conclude that the vertebrate immune system has evolved by inserting new genes into old gene regulatory networks dedicated to immunity.
Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution
Jeramiah Smith, Weiming Li and colleagues report the whole-genome sequence of the sea lamprey, Petromyzon marinus , representing a vertebrate lineage diverged from humans ~500 million years ago. Their analyses define key evolutionary events in vertebrate lineages and provide evidence for two whole-genome duplication events occurring before the divergence of the ancestral lamprey and jawed vertebrate (gnathostome) lineages. Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey ( P. marinus ) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.