Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
41
result(s) for
"Panthee, Dilip"
Sort by:
Current Status of Early Blight Resistance in Tomato: An Update
by
Oh, Yeonyee
,
Adhikari, Pragya
,
Panthee, Dilip
in
Alternaria - pathogenicity
,
Alternaria - physiology
,
Chromosome Mapping
2017
Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL) conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS) and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects.
Journal Article
Filter paper-based spin column method for cost-efficient DNA or RNA purification
2018
We describe herein a method of recharging used commercial spin columns or assembling homemade spin columns using filter paper as binding material for cost-effective, low throughput nucleic acid purification. The efficiency of filter paper-based spin columns was evaluated for purification of nucleic acids from various sources. Following protocols of commercial kits, we found filter paper to be a useful binding material for purification of nucleic acids, including plant genomic DNA, plant total RNA, PCR products, and DNA from agarose gels. However, filter paper has a weak binding affinity to plasmid DNA in tested miniprep protocols. Protocols for the use of filter paper recharged spin columns or homemade spin columns for low throughput purification of plant genomic DNA and total RNA with unused commercial kit buffers or less expensive homemade buffers are presented.
Journal Article
PyBSASeq: a simple and effective algorithm for bulked segregant analysis with whole-genome sequencing data
2020
Background
Bulked segregant analysis (BSA), coupled with next-generation sequencing, allows the rapid identification of both qualitative and quantitative trait loci (QTL), and this technique is referred to as BSA-Seq here. The current SNP index method and G-statistic method for BSA-Seq data analysis require relatively high sequencing coverage to detect significant single nucleotide polymorphism (SNP)-trait associations, which leads to high sequencing cost.
Results
We developed a simple and effective algorithm for BSA-Seq data analysis and implemented it in Python; the program was named PyBSASeq. Using PyBSASeq, the significant SNPs (sSNPs), SNPs likely associated with the trait, were identified via Fisher’s exact test, and then the ratio of the sSNPs to total SNPs in a chromosomal interval was used to detect the genomic regions that condition the trait of interest. The results obtained this way are similar to those generated via the current methods, but with more than five times higher sensitivity. This approach was termed the significant SNP method here.
Conclusions
The significant SNP method allows the detection of SNP-trait associations at much lower sequencing coverage than the current methods, leading to ~ 80% lower sequencing cost and making BSA-Seq more accessible to the research community and more applicable to the species with a large genome.
Journal Article
Identification of quantitative trait loci associated with bacterial spot race T4 resistance in intra-specific populations of tomato (Solanum lycopersicum L.)
by
Adhikari, Pragya
,
Siddique, Muhammad Irfan
,
Panthee, Dilip R.
in
Agricultural research
,
Antibiotics
,
Bacteria
2023
Bacterial spot of tomato is a serious disease caused by at least four species and four races of Xanthomonas - X . euvesicatoria (race T1), X . vesicatoria (race T2), X . perforans (race T3 and T4), and X . gardneri , with X . perforans race T4 being predominant in the southeast USA. Practical management of this disease is challenging because of the need for more effective chemicals and commercially resistant cultivars. Identification of genetic resistance is the first step to developing a disease-resistant variety. The objective of this study was to identify quantitative trait loci (QTL) conferring resistance to race T4 in two independent recombinant inbred lines (RILs) populations NC 10204 (intra-specific) and NC 13666 (interspecific) developed by crossing NC 30P x NC22L-1(2008) and NC 1CELBR x PI 270443, respectively. Seven QTLs on chromosomes 2, 6, 7, 11, and 12 were identified in NC 10204. The QTL on chromosome 6 explained the highest percentage of phenotypic variance (up to 21.3%), followed by the QTL on chromosome 12 (up to 8.2%). On the other hand, the QTLs on chromosomes 1, 3, 4, 6, 7, 8, 9, and 11 were detected in NC 13666. The QTLs on chromosomes 6, 7, and 11 were co-located in NC 10204 and NC 13666 populations. The donor of the resistance associated with these QTL in NC 10204 is a released breeding line with superior horticultural traits. Therefore, both the donor parent and the QTL information will be useful in tomato breeding programs as there will be minimal linkage drag associated with the bacterial spot resistance.
Journal Article
High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding
2012
The effects of selection on genome variation were investigated and visualized in tomato using a high-density single nucleotide polymorphism (SNP) array. 7,720 SNPs were genotyped on a collection of 426 tomato accessions (410 inbreds and 16 hybrids) and over 97% of the markers were polymorphic in the entire collection. Principal component analysis (PCA) and pairwise estimates of F(st) supported that the inbred accessions represented seven sub-populations including processing, large-fruited fresh market, large-fruited vintage, cultivated cherry, landrace, wild cherry, and S. pimpinellifolium. Further divisions were found within both the contemporary processing and fresh market sub-populations. These sub-populations showed higher levels of genetic diversity relative to the vintage sub-population. The array provided a large number of polymorphic SNP markers across each sub-population, ranging from 3,159 in the vintage accessions to 6,234 in the cultivated cherry accessions. Visualization of minor allele frequency revealed regions of the genome that distinguished three representative sub-populations of cultivated tomato (processing, fresh market, and vintage), particularly on chromosomes 2, 4, 5, 6, and 11. The PCA loadings and F(st) outlier analysis between these three sub-populations identified a large number of candidate loci under positive selection on chromosomes 4, 5, and 11. The extent of linkage disequilibrium (LD) was examined within each chromosome for these sub-populations. LD decay varied between chromosomes and sub-populations, with large differences reflective of breeding history. For example, on chromosome 11, decay occurred over 0.8 cM for processing accessions and over 19.7 cM for fresh market accessions. The observed SNP variation and LD decay suggest that different patterns of genetic variation in cultivated tomato are due to introgression from wild species and selection for market specialization.
Journal Article
Transcriptome-Based Analysis of Tomato Genotypes Resistant to Bacterial Spot (Xanthomonas perforans) Race T4
by
Shi, Rui
,
Panthee, Dilip R.
in
Chromosomes
,
Computational Biology - methods
,
Disease Resistance - genetics
2020
Bacterial spot (BS) is one of the most devastating foliar bacterial diseases of tomato and is caused by multiple species of Xanthomonas. We performed the RNA sequencing (RNA-Seq) analysis of three tomato lines with different levels of resistance to Xanthomonas perforans race T4 to study the differentially expressed genes (DEGs) and transcript-based sequence variations. Analysis between inoculated and control samples revealed that resistant genotype Solanum pimpinellifolium accession PI 270443 had more DEGs (834), followed by susceptible genotype tomato (S. lycopersicum L) breeding line NC 714 (373), and intermediate genotype tomato breeding line NC 1CELBR (154). Gene ontology (GO) terms revealed that more GO terms (51) were enriched for upregulated DEGs in the resistant genotype PI 270443, and more downregulated DEGs (67) were enriched in the susceptible genotype NC 714. DEGs in the biotic stress pathway showed more upregulated biotic stress pathway DEGs (67) for PI 270443 compared to more downregulated DEGs (125) for the susceptible NC 714 genotype. Resistant genotype PI 270443 has three upregulated DEGs for pathogenesis-related (PR) proteins, and susceptible genotype NC 714 has one downregulated R gene. Sequence variations called from RNA-Seq reads against the reference genome of susceptible Heinz 1706 showed that chr11, which has multiple reported resistance quantitative trait loci (QTLs) to BS race T4, is identical between two resistant lines, PI 270443 and NC 1CELBR, suggesting that these two lines share the same resistance QTLs on this chromosome. Several loci for PR resistance proteins with sequence variation between the resistant and susceptible tomato lines were near the known Rx4 resistance gene on chr11, and additional biotic stress associated DEGs near to the known Rx4 resistance gene were also identified from the susceptible NC 714 line.
Journal Article
Mapping Quantitative Trait Loci (QTL) for Resistance to Late Blight in Tomato
2017
Late blight caused by Phytophthora infestans (Montagne, Bary) is a devastating disease of tomato worldwide. There are three known major genes, Ph-1, Ph-2, and Ph-3, conferring resistance to late blight. In addition to these three genes, it is also believed that there are additional factors or quantitative trait loci (QTL) conferring resistance to late blight. Precise molecular mapping of all those major genes and potential QTL is important in the development of suitable molecular markers and hence, marker-assisted selection (MAS). The objective of the present study was to map the genes and QTL associated with late blight resistance in a tomato population derived from intra-specific crosses. To achieve this objective, a population, derived from the crossings of NC 1CELBR × Fla. 7775, consisting of 250 individuals at F2 and F2-derived families, were evaluated in replicated trials. These were conducted at Mountain Horticultural Crops Reseach & Extension Center (MHCREC) at Mills River, NC, and Mountain Research Staion (MRS) at Waynesville, NC in 2011, 2014, and 2015. There were two major QTL associated with late blight resistance located on chromosomes 9 and 10 with likelihood of odd (LOD) scores of more than 42 and 6, explaining 67% and 14% of the total phenotypic variation, respectively. The major QTLs are probably caused by the Ph-2 and Ph-3 genes. Furthermore, there was a minor QTL on chromosomes 12, which has not been reported before. This minor QTL may be novel and may be worth investigating further. Source of resistance to Ph-2, Ph-3, and this minor QTL traces back to line L3707, or Richter’s Wild Tomato. The combination of major genes and minor QTL may provide a durable resistance to late blight in tomato.
Journal Article
Application of Molecular Markers in Crop Improvement and Beyond
2023
The application of molecular markers in crop improvement first started in the 1980s [...]
Journal Article
Editorial: Identification, development and use of rootstocks to improve pest and disease resistance of vegetable crops
by
Thies, Judy A.
,
Panthee, Dilip R.
in
Agricultural production
,
breeding for resistance
,
Citrus fruits
2023
Grafting susceptible crop plants on disease and pest-resistant rootstocks is a valuable management practice for reducing damage caused by plant-parasitic nematodes and plant pathogens in vegetable and fruit tree crops worldwide. By combining pedigree-based genetic information with quantitative phenotypic data, it would be easier to identify and select rootstocks with superior trait combinations needed for rootstock development using marker-assisted-selection, enabling rapid selection of successive-generation rootstocks with the desirable trait combinations for development of marketable rootstocks. [...]when a susceptible scion is grafted on a rootstock with low susceptibility, the rootstock susceptibility may be increased. [...]it is important to evaluate each scion/rootstock combination and not rely on rootstock performance alone since there may be unexpected scion/rootstock interactions. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Journal Article
Natural Variation for Responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in Heirloom Tomatoes
by
Martin, Gregory B.
,
Veluchamy, Selvakumar
,
Dunham, Diane M.
in
Amino Acids - biosynthesis
,
Bacteria
,
Bacterial Proteins - metabolism
2014
Tomato (Solanum lycopersicum L.) is susceptible to many diseases including bacterial speck caused by Pseudomonas syringae pv. tomato. Bacterial speck disease is a serious problem worldwide in tomato production areas where moist conditions and cool temperatures occur. To enhance breeding of speck resistant fresh-market tomato cultivars we identified a race 0 field isolate, NC-C3, of P. s. pv. tomato in North Carolina and used it to screen a collection of heirloom tomato lines for speck resistance in the field. We observed statistically significant variation among the heirloom tomatoes for their response to P. s. pv. tomato NC-C3 with two lines showing resistance approaching a cultivar that expresses the Pto resistance gene, although none of the heirloom lines have Pto. Using an assay that measures microbe-associated molecular pattern (MAMP)-induced production of reactive oxygen species (ROS), we investigated whether the heirloom lines showed differential responsiveness to three bacterial-derived peptide MAMPs: flg22 and flgII-28 (from flagellin) and csp22 (from cold shock protein). Significant differences were observed for MAMP responsiveness among the lines, although these differences did not correlate strongly with resistance or susceptibility to bacterial speck disease. The identification of natural variation for MAMP responsiveness opens up the possibility of using a genetic approach to identify the underlying loci and to facilitate breeding of cultivars with enhanced disease resistance. Towards this goal, we discovered that responsiveness to csp22 segregates as a single locus in an F2 population of tomato.
Journal Article