Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Rowen, Lee"
Sort by:
Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing
by
Galas, David J
,
Smit, Arian F.A
,
Pant, Krishna P
in
Abnormalities, Multiple - genetics
,
Algorithms
,
Alleles
2010
We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in > 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of approximately 1.1 x 10⁻⁸ per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.
Journal Article
The Evolution of Vertebrate Toll-Like Receptors
2005
The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced >70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt.
Journal Article
Majority of Divergence between Closely Related DNA Samples Is Due to Indels
by
Rowen, Lee
,
Cameron, R. Andrew
,
Britten, Roy J.
in
Animals
,
Arabidopsis thaliana
,
Biodiversity
2003
It was recently shown that indels are responsible for more than twice as many unmatched nucleotides as are base substitutions between samples of chimpanzee and human DNA. A larger sample has now been examined and the result is similar. The number of indels is ≈1/12th of the number of base substitutions and the average length of the indels is 36 nt, including indels up to 10 kb. The ratio (Ru) of unpaired nucleotides attributable to indels to those attributable to substitutions is 3.0 for this 2 million-nt chimp DNA sample compared with human. There is similar evidence of a large value of Rufor sea urchins from the polymorphism of a sample of Strongylocentrotus purpuratus DNA (Ru= 3-4). Other work indicates that similarly, per nucleotide affected, large differences are seen for indels in the DNA polymorphism of the plant Arabidopsis thaliana (Ru= 51). For the insect Drosophila melanogaster a high value of Ru(4.5) has been determined. For the nematode Caenorhabditis elegans the polymorphism data are incomplete but high values of Ruare likely. Comparison of two strains of Escherichia coli O157:H7 shows a preponderance of indels. Because these six examples are from very distant systematic groups the implication is that in general, for alignments of closely related DNA, indels are responsible for many more unmatched nucleotides than are base substitutions. Human genetic evidence suggests that indels are a major source of gene defects, indicating that indels are a significant source of evolutionary change.
Journal Article
Genomic Analysis of Orthologous Mouse and Human Olfactory Receptor Loci
by
Young, Janet
,
Rowen, Lee
,
Evans, Glen
in
5' Untranslated Regions - genetics
,
Animals
,
Biological Sciences
2001
Olfactory receptor (OR) genes represent ≈1% of genomic coding sequence in mammals, and these genes are clustered on multiple chromosomes in both the mouse and human genomes. We have taken a comparative genomics approach to identify features that may be involved in the dynamic evolution of this gene family and in the transcriptional control that results in a single OR gene expressed per olfactory neuron. We sequenced ≈350 kb of the murine P2 OR cluster and used synteny, gene linkage, and phylogenetic analysis to identify and sequence ≈111 kb of an orthologous cluster in the human genome. In total, 18 mouse and 8 human OR genes were identified, including 7 orthologs that appear to be functional in both species. Noncoding homology is evident between orthologs and generally is confined within the transcriptional unit. We find no evidence for common regulatory features shared among paralogs, and promoter regions generally do not contain strong promoter motifs. We discuss these observations, as well as OR clustering, in the context of evolutionary expansion and transcriptional regulation of OR repertoires.
Journal Article
A Genomic Regulatory Network for Development
2002
Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.
Journal Article
Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes
by
Zharkikh, Andrey
,
Pruss, Dmitry
,
Chapman, Jarrod
in
Animals
,
Biological and medical sciences
,
Biological Evolution
2002
The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some \"giant\" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.
Journal Article
Complete sequence and gene map of a human major histocompatibility complex
by
The MHC sequencing consortium
in
Biological and medical sciences
,
Brain-derived neurotrophic factor
,
Fundamental and applied biological sciences. Psychology
1999
Here we report the first complete sequence and gene map of a human major histocompatibility complex (MHC), a region on chromosome 6 which is essential to the immune system (reviewed in ref.
1
). When it was discovered over 50 years ago the region was thought to specify histocompatibility genes, but their nature has been resolved only in the last two decades. Although many of the 224 identified gene loci (128 predicted to be expressed) are still of unknown function, we estimate that about 40% of the expressed genes have immune system function. Over 50% of the MHC has been sequenced twice, in different haplotypes, giving insight into the extraordinary polymorphism and evolution of this region. Several genes, particularly of the MHC class II and III regions, can be traced by sequence similarity and synteny to over 700 million years ago, clearly predating the emergence of the adaptive immune system some 400 million years ago. The sequence is expected to be invaluable for the identification of many common disease loci. In the past, the search for these loci has been hampered by the complexity of high gene density and linkage disequilibrium.
Journal Article
The Complete 685-Kilobase DNA Sequence of the Human β T Cell Receptor Locus
by
Hood, Leroy
,
Koop, Ben F.
,
Rowen, Lee
in
Amino Acid Sequence
,
Analysis
,
Antigen receptors, T cell
1996
The human β T cell receptor (TCR) locus, comprising a complex family of genes, has been sequenced. The locus contains two types of coding elements-TCR elements (65 variable gene segments and two clusters of diversity, joining, and constant segments) and eight trypsinogen genes-that constitute 4.6 percent of the DNA. Genome-wide interspersed repeats and locus-specific repeats span 30 and 47 percent, respectively, of the 685-kilobase sequence. A comparison of the germline variable elements with their approximately 300 complementary DNA counterparts reveals marked differential patterns of variable gene expression, the importance of exonuclease activity in generating TCR diversity, and the predominant tendency for only functional variable elements to be present in complementary DNA libraries.
Journal Article