Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
198 result(s) for "Seigo Ito"
Sort by:
Streptococcus mutans induces IgA nephropathy-like glomerulonephritis in rats with severe dental caries
The mechanisms underlying immunoglobulin A nephropathy (IgAN), the most common chronic form of primary glomerulonephritis, remain poorly understood. Streptococcus mutans , a Gram-positive facultatively anaerobic oral bacterium, is a common cause of dental caries. In previous studies, S. mutans isolates that express Cnm protein on their cell surface were frequently detected in IgAN patients. In the present study, inoculation of Cnm-positive S. mutans in the oral cavities of 2-week-old specific-pathogen free Sprague–Dawley rats fed a high-sucrose diet for 32 weeks produced severe dental caries in all rats. Immunohistochemical analyses of the kidneys using IgA- and complement C3-specific antibodies revealed positive staining in the mesangial region. Scanning electron microscopy revealed a wide distribution of electron dense deposits in the mesangial region and periodic acid-Schiff staining demonstrated prominent proliferation of mesangial cells and mesangial matrix. These results suggest that IgAN-like glomerulonephritis was induced in rats with severe dental caries by Cnm-positive S. mutans .
Thermal Stability of Encapsulated Carbon-Based Multiporous-Layered-Electrode Perovskite Solar Cells Extended to Over 5000 h at 85 °C
The key to the practical application of organometal–halide crystals perovskite solar cells (PSCs) is to achieve thermal stability through robust encapsulation. This paper presents a method to significantly extend the thermal stability lifetime of perovskite solar cells to over 5000 h at 85 °C by demonstrating an optimal combination of encapsulation methods and perovskite composition for carbon-based multiporous-layered-electrode (MPLE)-PSCs. We fabricated four types of MPLE-PSCs using two encapsulation structures (over- and side-sealing with thermoplastic resin films) and two perovskite compositions ((5-AVA)x(methylammonium (MA))1−xPbI3 and (formamidinium (FA))0.9Cs0.1PbI3), and analyzed the 85 °C thermal stability followed by the ISOS-D-2 protocol. Without encapsulation, FA0.9Cs0.1PbI3 exhibited higher thermal stability than (5-AVA)x(MA)1−xPbI3. However, encapsulation reversed the phenomenon (that of (5-AVA)x(MA)1−xPbI3 became stronger). The combination of the (5-AVA)x(MA)1−xPbI3 perovskite absorber and over-sealing encapsulation effectively suppressed the thermal degradation, resulting in a PCE value of 91.2% of the initial value after 5072 h. On the other hand, another combination (side-sealing on (5-AVA)x(MA)1−xPbI3 and over- and side-sealing on FA0.9Cs0.1PbI3) resulted in decreased stability. The FACs-based perovskite was decomposed from these degradation mechanisms by the condensation reaction between FA and carbon. For side-sealing, the space between the cell and the encapsulant was estimated to contain approximately 1,260,000 times more H2O than in over-sealing, which catalyzed the degradation of the perovskite crystals. Our results demonstrate that MA-based PSCs, which are generally considered to be thermally sensitive, can significantly extend their thermal stability after proper encapsulation. Therefore, we emphasize that finding the appropriate combination of encapsulation technique and perovskite composition is quite important to achieve further device stability.
Intravenous administration of Streptococcus mutans induces IgA nephropathy-like lesions
BackgroundIgA nephropathy (IgAN) is one of the most frequently occurring types of chronic glomerulonephritis. Previous analyses have revealed that a major pathogen of dental caries, Streptococcus mutans [which expresses collagen-binding protein (Cnm) on its surface], is involved in the pathogenesis of IgAN.MethodsCnm-positive S. mutans isolated from a patient with IgAN was intravenously administered to specific pathogen-free Sprague–Dawley rats to evaluate their kidney conditions.ResultsThe urinary protein level of the S. mutans group reached a plateau at 30 days, with increased numbers of mesangial cells and an increased mesangial matrix. The numbers of rats with IgA-positive and/or C3-positive glomeruli were significantly greater in the S. mutans group than in the control group at 45 days (P < 0.05). Electron microscopy analyses revealed electron-dense depositions in the mesangial area among rats in the S. mutans group. There were significantly more CD68-positive cells (macrophages) in the glomeruli of the S. mutans group than in the glomeruli of the control group during the late phase (P < 0.05), similar to the findings in patients with IgAN.ConclusionOur results suggested that intravenous administration of Cnm-positive S. mutans caused transient induction of IgAN-like lesions in rats.
Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis
A relationship between IgA nephropathy (IgAN) and bacterial infection has been suspected. As IgAN is a chronic disease, bacteria that could cause chronic infection in oral areas might be pathogenetic bacteria candidates. Oral bacterial species related to dental caries and periodontitis should be candidates because these bacteria are well known to be pathogenic in chronic dental disease. Recently, several reports have indicated that collagen-binding protein (cnm)-(+) Streptococcs mutans is relate to the incidence of IgAN and the progression of IgAN. Among periodontal bacteria, Treponema denticola, Porphyromonas gingivalis and Campylobacte rectus were found to be related to the incidence of IgAN. These bacteria can cause IgAN-like histological findings in animal models. While the connection between oral bacterial infection, such as infection with S. mutans and periodontal bacteria, and the incidence of IgAN remains unclear, these bacterial infections might cause aberrantly glycosylated IgA1 in nasopharynx-associated lymphoid tissue, which has been reported to cause IgA deposition in mesangial areas in glomeruli, probably through the alteration of microRNAs related to the expression of glycosylation enzymes. The roles of other factors related to the incidence and progression of IgA, such as genes and cigarette smoking, can also be explained from the perspective of the relationship between these factors and oral bacteria. This review summarizes the relationship between IgAN and oral bacteria, such as cnm-(+) S. mutans and periodontal bacteria.
Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle
We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.
Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte
Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (∼6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO 2 layer. The inclusion of a SiO 2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO 2 layer are responsible for the enhanced performance. Low-cost, efficient solar cells are sought as an alternative to silicon photovoltaics. Here a dye-based bifacial solar cell that is capable of efficient generation of electricity for light incident on either its front or rear face is demonstrated.
Contrasting functional responses of resident Kupffer cells and recruited liver macrophages to irradiation and liver X receptor stimulation
In the murine liver, there are two major macrophage populations, namely resident Kupffer cells (resKCs) with phagocytic activity and recruited macrophages (recMφs) with cytokine-producing capacity. This study was performed to clarify the functional differences between these two populations, focusing on their susceptibility to radiation and response to stimulation via liver X receptors (LXRs), which are implicated in cholesterol metabolism and immune regulation. Liver mononuclear cells (MNCs) were obtained from C57BL/6 (WT) mice with or without 2 Gy irradiation, and the phagocytic activity against Escherichia coli (E . coli) as well as TNF-α production were compared between the two macrophage populations. To assess LXR functions, phagocytosis, TNF-α production, and endocytosis of acetylated low-density lipoprotein (LDL) were compared after synthetic LXR ligand stimulation. Furthermore, LXRα/β knockout (KO) mice and LXRα KO mice were compared with WT mice. Irradiation decreased intracellular TNF-α production by recMφs but did not affect the phagocytic activity of resKCs. In vitro LXR stimulation enhanced E . coli phagocytosis by resKCs but decreased E . coli -stimulated TNF-α production by recMφs. Phagocytic activity and acetylated LDL endocytosis were decreased in both LXRα/β KO mice and LXRα KO mice, with serum TNF-α levels after E . coli injection in the former being higher than those in WT mice. In conclusion, resKCs and recMφs exhibited different functional features in response to radiation and LXR stimulation, highlighting their distinct roles liver immunity and lipid metabolism.
cnm-positive Streptococcus mutans is associated with galactose-deficient IgA in patients with IgA nephropathy
The presence of Streptococcus mutans expressing Cnm protein encoded by cnm ( cnm -positive S . mutans ) in the oral cavity is associated with immunoglobulin A (IgA) nephropathy (IgAN). However, the precise mechanism by which cnm -positive S . mutans is involved in the pathogenesis of IgAN remains unclear. The present study evaluated glomerular galactose-deficient IgA1 (Gd-IgA1) to clarify the association between the presence of cnm -positive S . mutans and glomerular Gd-IgA1 in patients with IgAN. The presence of S . mutans and cnm -positive S . mutans was evaluated by polymerase chain reaction in saliva specimens from 74 patients with IgAN or IgA vasculitis. Immunofluorescent staining of IgA and Gd-IgA1 using KM55 antibody in clinical glomerular tissues was then performed. There was no significant association between the glomerular staining intensity of IgA and the positive rate of S . mutans . However, there was a significant association between the glomerular staining intensity of IgA and the positive rate of cnm -positive S . mutans ( P < 0.05). There was also a significant association between the glomerular staining intensity of Gd-IgA1 (KM55) and the positive rate of cnm -positive S . mutans ( P < 0.05). The glomerular staining intensity of Gd-IgA1 (KM55) was not associated with the positive rate of S . mutans . These results suggest that cnm -positive S . mutans in the oral cavity is associated with the pathogenesis of Gd-IgA1 in patients with IgAN.
Designed Mesoporous Architecture by 10–100 nm TiO2 as Electron Transport Materials in Carbon-Based Multiporous-Layered-Electrode Perovskite Solar Cells
Fully printable carbon-based multiporous-layered-electrode perovskite solar cells (MPLE-PSCs) are easy to fabricate and have excellent durability. In this study, the porosity of the mesoporous TiO2 layer as the electron transport layer in MPLE-PSCs was controlled by varying the particle diameter of TiO2 nanoparticles from 14 nm to 98 nm. Furthermore, the results of absorbed photon-to-current conversion efficiency, visible light reflectance spectroscopy, pore-size distribution, X-ray diffraction, field emission scanning electron microscopy, and photovoltaic parameters of MPLE-PSCs are discussed. Although the porous TiO2 layer with smaller nanoparticles showed higher photoabsorption, it was found that the more voids of perovskite crystals created in the TiO2 porous layer, the smaller the particle size (<18 nm). The porous TiO2 layers with particles over 26 nm are well filled with perovskite crystals, resulting in a higher photovoltaic capacity with TiO2 particles over 26 nm. As a result, the short-circuit current density (JSC) showed a maximum value using 43 nm TiO2 particles, with an average power conversion efficiency (PCE) of 10.56 ± 1.42%. Moreover, the PCE showed a maximum value of 12.20% by using 26 nm TiO2 nanoparticles.
Relationship between IgA Nephropathy and Porphyromonas gingivalis; Red Complex of Periodontopathic Bacterial Species
IgA nephropathy (IgAN) has been considered to have a relationship with infection in the tonsil, because IgAN patients often manifest macro hematuria just after tonsillitis. In terms of oral-area infection, the red complex of periodontal bacteria (Porphyromonas gingivalis (P. gingivalis), Treponema denticol (T. denticola) and Tannerella forsythia (T. forsythia)) is important, but the relationship between these bacteria and IgAN remains unknown. In this study, the prevalence of the red complex of periodontal bacteria in tonsil was compared between IgAN and tonsillitis patients. The pathogenicity of IgAN induced by P. gingivalis was confirmed by the mice model treated with this bacterium. The prevalence of P. gingivalis and T. forsythia in IgAN patients was significantly higher than that in tonsillitis patients (p < 0.001 and p < 0.05, respectively). A total of 92% of tonsillitis patients were free from red complex bacteria, while only 48% of IgAN patients had any of these bacteria. Nasal administration of P. gingivalis in mice caused mesangial proliferation (p < 0.05 at days 28a nd 42; p < 0.01 at days 14 and 56) and IgA deposition (p < 0.001 at day 42 and 56 after administration). Scanning-electron-microscopic observation revealed that a high-density Electron-Dense Deposit was widely distributed in the mesangial region in the mice kidneys treated with P. gingivalis. These findings suggest that P. gingivalis is involved in the pathogenesis of IgAN.