Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Seltzer, Michael L"
Sort by:
Towards measuring fairness in speech recognition: Fair-Speech dataset
by
Irina-Elena Veliche
,
Huang, Zhuangqun
,
Seltzer, Michael L
in
Datasets
,
Demographics
,
English language
2024
The current public datasets for speech recognition (ASR) tend not to focus specifically on the fairness aspect, such as performance across different demographic groups. This paper introduces a novel dataset, Fair-Speech, a publicly released corpus to help researchers evaluate their ASR models for accuracy across a diverse set of self-reported demographic information, such as age, gender, ethnicity, geographic variation and whether the participants consider themselves native English speakers. Our dataset includes approximately 26.5K utterances in recorded speech by 593 people in the United States, who were paid to record and submit audios of themselves saying voice commands. We also provide ASR baselines, including on models trained on transcribed and untranscribed social media videos and open source models.
End-to-End Speech Recognition Contextualization with Large Language Models
by
Fuegen, Christian
,
Wu, Chunyang
,
Fathullah, Yassir
in
Context
,
Large language models
,
Speech recognition
2023
In recent years, Large Language Models (LLMs) have garnered significant attention from the research community due to their exceptional performance and generalization capabilities. In this paper, we introduce a novel method for contextualizing speech recognition models incorporating LLMs. Our approach casts speech recognition as a mixed-modal language modeling task based on a pretrained LLM. We provide audio features, along with optional text tokens for context, to train the system to complete transcriptions in a decoder-only fashion. As a result, the system is implicitly incentivized to learn how to leverage unstructured contextual information during training. Our empirical results demonstrate a significant improvement in performance, with a 6% WER reduction when additional textual context is provided. Moreover, we find that our method performs competitively and improve by 7.5% WER overall and 17% WER on rare words against a baseline contextualized RNN-T system that has been trained on more than twenty five times larger speech dataset. Overall, we demonstrate that by only adding a handful number of trainable parameters via adapters, we can unlock contextualized speech recognition capability for the pretrained LLM while keeping the same text-only input functionality.
Modality Confidence Aware Training for Robust End-to-End Spoken Language Understanding
2023
End-to-end (E2E) spoken language understanding (SLU) systems that generate a semantic parse from speech have become more promising recently. This approach uses a single model that utilizes audio and text representations from pre-trained speech recognition models (ASR), and outperforms traditional pipeline SLU systems in on-device streaming scenarios. However, E2E SLU systems still show weakness when text representation quality is low due to ASR transcription errors. To overcome this issue, we propose a novel E2E SLU system that enhances robustness to ASR errors by fusing audio and text representations based on the estimated modality confidence of ASR hypotheses. We introduce two novel techniques: 1) an effective method to encode the quality of ASR hypotheses and 2) an effective approach to integrate them into E2E SLU models. We show accuracy improvements on STOP dataset and share the analysis to demonstrate the effectiveness of our approach.
Towards Language-Universal End-to-End Speech Recognition
2017
Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share some internal parameters. In this work, we exploit recent progress in end-to-end speech recognition to create a single multilingual speech recognition system capable of recognizing any of the languages seen in training. To do so, we propose the use of a universal character set that is shared among all languages. We also create a language-specific gating mechanism within the network that can modulate the network's internal representations in a language-specific way. We evaluate our proposed approach on the Microsoft Cortana task across three languages and show that our system outperforms both the individual monolingual systems and systems built with a multi-task learning approach. We also show that this model can be used to initialize a monolingual speech recognizer, and can be used to create a bilingual model for use in code-switching scenarios.
Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers
2023
We show how factoring the RNN-T's output distribution can significantly reduce the computation cost and power consumption for on-device ASR inference with no loss in accuracy. With the rise in popularity of neural-transducer type models like the RNN-T for on-device ASR, optimizing RNN-T's runtime efficiency is of great interest. While previous work has primarily focused on the optimization of RNN-T's acoustic encoder and predictor, this paper focuses the attention on the joiner. We show that despite being only a small part of RNN-T, the joiner has a large impact on the overall model's runtime efficiency. We propose to utilize HAT-style joiner factorization for the purpose of skipping the more expensive non-blank computation when the blank probability exceeds a certain threshold. Since the blank probability can be computed very efficiently and the RNN-T output is dominated by blanks, our proposed method leads to a 26-30% decoding speed-up and 43-53% reduction in on-device power consumption, all the while incurring no accuracy degradation and being relatively simple to implement.
Massively Multilingual ASR on 70 Languages: Tokenization, Architecture, and Generalization Capabilities
2022
End-to-end multilingual ASR has become more appealing because of several reasons such as simplifying the training and deployment process and positive performance transfer from high-resource to low-resource languages. However, scaling up the number of languages, total hours, and number of unique tokens is not a trivial task. This paper explores large-scale multilingual ASR models on 70 languages. We inspect two architectures: (1) Shared embedding and output and (2) Multiple embedding and output model. In the shared model experiments, we show the importance of tokenization strategy across different languages. Later, we use our optimal tokenization strategy to train multiple embedding and output model to further improve our result. Our multilingual ASR achieves 13.9%-15.6% average WER relative improvement compared to monolingual models. We show that our multilingual ASR generalizes well on an unseen dataset and domain, achieving 9.5% and 7.5% WER on Multilingual Librispeech (MLS) with zero-shot and finetuning, respectively.
Deliberation Model for On-Device Spoken Language Understanding
by
Paden Tomasello
,
Livshits, Aleksandr
,
Seltzer, Michael L
in
Automatic speech recognition
,
Hypotheses
,
Semantics
2022
We propose a novel deliberation-based approach to end-to-end (E2E) spoken language understanding (SLU), where a streaming automatic speech recognition (ASR) model produces the first-pass hypothesis and a second-pass natural language understanding (NLU) component generates the semantic parse by conditioning on both ASR's text and audio embeddings. By formulating E2E SLU as a generalized decoder, our system is able to support complex compositional semantic structures. Furthermore, the sharing of parameters between ASR and NLU makes the system especially suitable for resource-constrained (on-device) environments; our proposed approach consistently outperforms strong pipeline NLU baselines by 0.60% to 0.65% on the spoken version of the TOPv2 dataset (STOP). We demonstrate that the fusion of text and audio features, coupled with the system's ability to rewrite the first-pass hypothesis, makes our approach more robust to ASR errors. Finally, we show that our approach can significantly reduce the degradation when moving from natural speech to synthetic speech training, but more work is required to make text-to-speech (TTS) a viable solution for scaling up E2E SLU.
Improving Fast-slow Encoder based Transducer with Streaming Deliberation
2022
This paper introduces a fast-slow encoder based transducer with streaming deliberation for end-to-end automatic speech recognition. We aim to improve the recognition accuracy of the fast-slow encoder based transducer while keeping its latency low by integrating a streaming deliberation model. Specifically, the deliberation model leverages partial hypotheses from the streaming fast encoder and implicitly learns to correct recognition errors. We modify the parallel beam search algorithm for fast-slow encoder based transducer to be efficient and compatible with the deliberation model. In addition, the deliberation model is designed to process streaming data. To further improve the deliberation performance, a simple text augmentation approach is explored. We also compare LSTM and Conformer models for encoding partial hypotheses. Experiments on Librispeech and in-house data show relative WER reductions (WERRs) from 3% to 5% with a slight increase in model size and negligible extra token emission latency compared with fast-slow encoder based transducer. Compared with vanilla neural transducers, the proposed deliberation model together with fast-slow encoder based transducer obtains relative 10-11% WERRs on Librispeech and around relative 6% WERR on in-house data with smaller emission delays.
G2G: TTS-Driven Pronunciation Learning for Graphemic Hybrid ASR
by
Fuegen, Christian
,
Seltzer, Michael L
,
Koehler, Thilo
in
Automatic speech recognition
,
Error reduction
,
Modelling
2020
Grapheme-based acoustic modeling has recently been shown to outperform phoneme-based approaches in both hybrid and end-to-end automatic speech recognition (ASR), even on non-phonemic languages like English. However, graphemic ASR still has problems with rare long-tail words that do not follow the standard spelling conventions seen in training, such as entity names. In this work, we present a novel method to train a statistical grapheme-to-grapheme (G2G) model on text-to-speech data that can rewrite an arbitrary character sequence into more phonetically consistent forms. We show that using G2G to provide alternative pronunciations during decoding reduces Word Error Rate by 3% to 11% relative over a strong graphemic baseline and bridges the gap on rare name recognition with an equivalent phonetic setup. Unlike many previously proposed methods, our method does not require any change to the acoustic model training procedure. This work reaffirms the efficacy of grapheme-based modeling and shows that specialized linguistic knowledge, when available, can be leveraged to improve graphemic ASR.
Acoustic Model Training for Robust Speech Recognition
by
Seltzer, Michael L.
in
acoustic model training for robust speech recognition
,
acoustic models and noise speech data, environment suboptimal
,
feature‐space NAT, and two front‐end compensation algorithms
2012
This chapter contains sections titled:
- Introduction Traditional Training Methods for Robust Speech Recognition A Brief Overview of Speaker Adaptive Training Feature‐Space Noise Adaptive Training Model‐Space Noise Adaptive Training Noise Adaptive Training using VTS Adaptation Discussion Conclusion References
Book Chapter