Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Tuong, Zewen K."
Sort by:
Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity
Immune cell dysfunction within the tumor microenvironment (TME) undermines the control of cancer progression. Established tumors contain phenotypically distinct, tumor-specific natural killer (NK) cells; however, the temporal dynamics, mechanistic underpinning and functional significance of the NK cell compartment remains incompletely understood. Here, we use photo-labeling, combined with longitudinal transcriptomic and cellular analyses, to interrogate the fate of intratumoral NK cells. We reveal that NK cells rapidly lose effector functions and adopt a distinct phenotypic state with features associated with tissue residency. NK cell depletion from established tumors did not alter tumor growth, indicating that intratumoral NK cells cease to actively contribute to anti-tumor responses. IL-15 administration prevented loss of function and improved tumor control, generating intratumoral NK cells with both tissue-residency characteristics and enhanced effector function. Collectively, our data reveals the fate of NK cells after recruitment into tumors and provides insight into how their function may be revived. Natural killer (NK) cells control tumor growth through direct cytotoxicity and recruitment of other leukocytes. Here, using photoconversion-based labeling to track the fate of NK cells in vivo, the authors demonstrate that loss of NK cell function occurs very rapidly following their entry into tumors, but can be reversed by IL-15 administration.
Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis
IgG antibodies cause inflammation and organ damage in autoimmune diseases such as systemic lupus erythematosus (SLE). We investigated the metabolic profile of macrophages isolated from inflamed tissues in immune complex (IC)-associated diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor cross-linking. We found that human and mouse macrophages undergo a switch to glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic changes in inflamed tissue in vivo. This metabolic reprogramming was required to generate a number of proinflammatory mediators, including IL-1β, and was dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led to a reduction in kidney macrophage IL-1β and reduced neutrophil recruitment in a murine model of antibody-mediated nephritis. Together, our data reveal the molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in macrophages and suggest a therapeutic strategy for autoantibody-induced inflammation, including lupus nephritis.
Tissue-resident B cells orchestrate macrophage polarisation and function
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with ‘pet-store’ mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic ‘inflammatory set-point’ of myeloid cells, with important consequences for tissue immunity. The function of B cells in peripheral blood and secondary lymphoid organs has long been appreciated but whether and how they contribute to tissue immune homeostasis is lesser known. Non-lymphoid organs harbour tissue-resident B cells that include a substantial population of B-1 cells and promote homeostatic anti-inflammatory macrophage polarization via IL-10, with profound effects on bacterial clearance during local infection.
Tumour-retained activated CCR7+ dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity
Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7 + DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7 + DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7 + DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7 + DCs co-localise with PD-1 + CD8 + T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7 + DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells. Recognition of tumour antigen induces dendritic cell activation and migration to the lymph node. Here, the authors use photoconvertible mice to demonstrate that some activated dendritic cells are retained in tumours and gradually lose function, but their ability to support local anti-tumour responses can be augmented by anti-PD-L1 blockade.
Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis
Lupus nephritis is a serious complication of systemic lupus erythematosus, mediated by IgG immune complex (IC) deposition in kidneys, with limited treatment options. Kidney macrophages are critical tissue sentinels that express IgG-binding Fcγ receptors (FcγRs), with previous studies identifying prenatally seeded resident macrophages as major IC responders. Using single-cell transcriptomic and spatial analyses in murine and human lupus nephritis, we sought to understand macrophage heterogeneity and subset-specific contributions in disease. In lupus nephritis, the cell fate trajectories of tissue-resident (TrMac) and monocyte-derived (MoMac) kidney macrophages were perturbed, with disease-associated transcriptional states indicating distinct pathogenic roles for TrMac and MoMac subsets. Lupus nephritis-associated MoMac subsets showed marked induction of FcγR response genes, avidly internalized circulating ICs, and presented IC-opsonized antigen. In contrast, lupus nephritis-associated TrMac subsets demonstrated limited IC uptake, but expressed monocyte chemoattractants, and their depletion attenuated monocyte recruitment to the kidney. TrMacs also produced B cell tissue niche factors, suggesting a role in supporting autoantibody-producing lymphoid aggregates. Extensive similarities were observed with human kidney macrophages, revealing cross-species transcriptional disruption in lupus nephritis. Overall, our study suggests a division of labor in the kidney macrophage response in lupus nephritis, with treatment implications - TrMacs orchestrate leukocyte recruitment while MoMacs take up and present IC antigen.
Examining the contribution of smoking and HPV towards the etiology of oral cavity squamous cell carcinoma using high-throughput sequencing: A prospective observational study
Oral cavity Squamous Cell Carcinoma (OCSCC) is a common form of head and neck cancer throughout the developed and developing world. However, the etiology of OCSCC is still unclear. Here, we explored the extent to which tobacco use, Human Papillomavirus (HPV) infection and genetic and transcriptomic changes contributed to the oncogenesis of OCSCC. In a prospective observational study, we analysed fresh tissue biopsies from 45 OCSCC collected from 51 subjects presenting with OCSCC to the Brisbane Head and Neck Clinics between 2013 and 2015. Exploration of the genetic and transcriptomic landscape of the biopsies were performed using RNA sequencing (RNA-seq) and whole exome sequencing. HPV associated tumours were determined using p16 staining of histological sections and RNA sequencing. Patient demographics including tumor location within the oral cavity, and history of tobacco and alcohol use were correlated with genomic and transcriptomics analyses. About 4.5% of OCSCC were HPV associated. The most frequent mutations in the OCSCC samples were in the TP53 and CDKN2A genes, but no association of specific mutations with HPV or tobacco use was observed. Using weighted gene co-expression network analysis to explore the RNA-seq data, tumors from participants with a history of tobacco use showed a significant trend towards increased mammalian target of Rapamycin (mTOR) signaling and decreased mitochondrial respiration. In conclusion, HPV was shown to be an uncommon association with OCSCC and changes in TP53 transcriptional regulation, mTOR signaling and mitochondrial function were associated with a history of tobacco use. Larger data sets will be required to enable detection of differences which may help with development of personalized therapeutics in the future.
Autoimmune uveitis in Behçet's disease and Vogt‐Koyanagi‐Harada disease differ in tissue immune infiltration and T cell clonality
Non-infectious uveitis is often secondary to systemic autoimmune diseases, with Behçet's disease (BD) and Vogt-Koyanagi-Harada disease (VKHD) as the two most common causes. Uveitis in BD and VKHD can show similar clinical manifestations, but the underlying immunopathogenesis remains unclear. To understand immune landscapes in inflammatory eye tissues, we performed single-cell RNA paired with T cell receptor (TCR) sequencing of immune cell infiltrates in aqueous humour from six patients with BD (  = 3) and VKHD (  = 3) uveitis patients. Although T cells strongly infiltrated in both types of autoimmune uveitis, myeloid cells only significantly presented in BD uveitis but not in VKHD uveitis. Conversely, VKHD uveitis but not BD uveitis showed an overwhelming dominance by CD4 T cells (> 80%) within the T cell population due to expansion of CD4 T cell clusters with effector memory (Tem) phenotypes. Correspondingly, VKHD uveitis demonstrated a selective expansion of CD4 T cell clones which were enriched in pro-inflammatory Granzyme H CD4 Tem cluster and showed TCR and Th1 pathway activation. In contrast, BD uveitis showed a preferential expansion of CD8 T cell clones in pro-inflammatory Granzyme H CD8 Tem cluster, and pathway activation for cytoskeleton remodelling, cellular adhesion and cytotoxicity. Single-cell analyses of ocular tissues reveal distinct landscapes of immune cell infiltration and T-cell clonal expansions between VKHD and BD uveitis. Preferential involvements of pro-inflammatory CD4 Th1 cells in VKHD and cytotoxic CD8 T cells in BD suggest a difference in disease immunopathogenesis and can guide precision disease management.
Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response
Endogenous DNA damage can perturb transcription, triggering a multifaceted cellular response that repairs the damage, degrades RNA polymerase II and shuts down global transcription 1 – 4 . This response is absent in the human disease Cockayne syndrome, which is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins 5 – 7 . However, the source of endogenous DNA damage and how this leads to the prominent degenerative features of this disease remain unknown. Here we find that endogenous formaldehyde impedes transcription, with marked physiological consequences. Mice deficient in formaldehyde clearance ( Adh5 −/− ) and CSB ( Csb m/m ; Csb is also known as Ercc6 ) develop cachexia and neurodegeneration, and succumb to kidney failure, features that resemble human Cockayne syndrome. Using single-cell RNA sequencing, we find that formaldehyde-driven transcriptional stress stimulates the expression of the anorexiogenic peptide GDF15 by a subset of kidney proximal tubule cells. Blocking this response with an anti-GDF15 antibody alleviates cachexia in Adh5 −/− Csb m/m mice. Therefore, CSB provides protection to the kidney and brain against DNA damage caused by endogenous formaldehyde, while also suppressing an anorexic endocrine signal. The activation of this signal might contribute to the cachexia observed in Cockayne syndrome as well as chemotherapy-induced anorectic weight loss. A plausible evolutionary purpose for such a response is to ensure aversion to genotoxins in food. Endogenous formaldehyde accumulation reveals Cockayne syndrome in mice and stimulates production of the anorexiogenic peptide GDF15 in proximal tubule cells.
Recruitment of Antigen Presenting Cells to Skin Draining Lymph Node From HPV16E7-Expressing Skin Requires E7-Rb Interaction
\"High-risk\" human papillomaviruses (HPV) infect keratinocytes of squamous epithelia. The HPV16E7 protein induces epithelial hyperplasia by binding Rb family proteins and disrupting cell cycle termination. Murine skin expressing HPV16E7 as a transgene from a keratin 14 promoter (K14.E7) demonstrates epithelial hyperplasia, dysfunctional antigen presenting cells, ineffective antigen presentation by keratinocytes, and production of immunoregulatory cytokines. Furthermore, grafted K14.E7 skin is not rejected from immunocompetent non-transgenic recipient animals. To establish the contributions of E7, of E7-Rb interaction and of epithelial hyperplasia to altered local skin immunity, K14.E7 skin was compared with skin from K14.E7 mice heterozygous for a mutant Rb unable to bind E7 (K14.E7xRb mice), that have normoplastic epithelium. Previously, we demonstrated that E7-speicfic T cells do not accumulate in K14.E7xRb skin grafts. Here, we further show that K14.E7xRb skin, like K14.E7 skin, is not rejected by immunocompetent non-transgenic animals. There were fewer CD11b antigen presenting cells in skin draining lymph nodes from animals recipient of K14.E7xRb grafts, when compared with animals receiving K14.E7 grafts or K5mOVA grafts. Maturation of migratory DCs derived from K14.E7xRb grafts found in the draining lymph nodes is significantly lower than that of K14.E7 grafts. Surprisingly, K14.E7xRb keratinocytes, unlike K14.E7 keratinocytes, are susceptible to E7 directed CTL-mediated lysis . We conclude that E7-Rb interaction and its associated epithelial hyperplasia partially contribute to the suppressive local immune responses in area affected by HPV16E7 expression.
An organotypic atlas of human vascular cells
The human vascular system, comprising endothelial cells (ECs) and mural cells, covers a vast surface area in the body, providing a critical interface between blood and tissue environments. Functional differences exist across specific vascular beds, but their molecular determinants across tissues remain largely unknown. In this study, we integrated single-cell transcriptomics data from 19 human organs and tissues and defined 42 vascular cell states from approximately 67,000 cells (62 donors), including angiotypic transitional signatures along the arterial endothelial axis from large to small caliber vessels. We also characterized organotypic populations, including splenic littoral and blood–brain barrier ECs, thus clarifying the molecular profiles of these important cell states. Interrogating endothelial–mural cell molecular crosstalk revealed angiotypic and organotypic communication pathways related to Notch, Wnt, retinoic acid, prostaglandin and cell adhesion signaling. Transcription factor network analysis revealed differential regulation of downstream target genes in tissue-specific modules, such as those of FOXF1 across multiple lung vascular subpopulations. Additionally, we make mechanistic inferences of vascular drug targets within different vascular beds. This open-access resource enhances our understanding of angiodiversity and organotypic molecular signatures in human vascular cells, and has therapeutic implications for vascular diseases across tissues. A vascular cell atlas integrating single-cell data of 19 organs and tissues from 62 donors identifies angiotypic and organotypic characteristics of endothelial and mural cells.