Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47,417 result(s) for "631/326"
Sort by:
Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis
Listeria monocytogenes is a food-borne pathogen responsible for a disease called listeriosis, which is potentially lethal in immunocompromised individuals. This bacterium, first used as a model to study cell-mediated immunity, has emerged over the past 20 years as a paradigm in infection biology, cell biology and fundamental microbiology. In this Review, we highlight recent advances in the understanding of human listeriosis and L. monocytogenes biology. We describe unsuspected modes of hijacking host cell biology, ranging from changes in organelle morphology to direct effects on host transcription via a new class of bacterial effectors called nucleomodulins. We then discuss advances in understanding infection in vivo, including the discovery of tissue-specific virulence factors and the 'arms race' among bacteria competing for a niche in the microbiota. Finally, we describe the complexity of bacterial regulation and physiology, incorporating new insights into the mechanisms of action of a series of riboregulators that are critical for efficient metabolic regulation, antibiotic resistance and interspecies competition.
The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
Characterizing the microbial communities inhabiting specimens is one of the primary objectives of microbiome studies. A short-read sequencing platform for reading partial regions of the 16S rRNA gene is most commonly used by reducing the cost burden of next-generation sequencing (NGS), but misclassification at the species level due to its length being too short to consider sequence similarity remains a challenge. Loop Genomics recently proposed a new 16S full-length-based synthetic long-read sequencing technology (sFL16S). We compared a 16S full-length-based synthetic long-read (sFL16S) and V3-V4 short-read (V3V4) methods using 24 human GUT microbiota samples. Our comparison analyses of sFL16S and V3V4 sequencing data showed that they were highly similar at all classification resolutions except the species level. At the species level, we confirmed that sFL16S showed better resolutions than V3V4 in analyses of alpha-diversity, relative abundance frequency and identification accuracy. Furthermore, we demonstrated that sFL16S could overcome the microbial misidentification caused by different sequence similarity in each 16S variable region through comparison the identification accuracy of Bifidobacterium , Bacteroides , and Alistipes strains classified from both methods. Therefore, this study suggests that the new sFL16S method is a suitable tool to overcome the weakness of the V3V4 method.
Population genomics of Klebsiella pneumoniae
Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by ‘hypervirulent’ K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.Over the past decade, Klebsiella pneumoniae has emerged as a major clinical and public health threat. In this Review, Wyres, Lam and Holt discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance.
Urinary tract infections: epidemiology, mechanisms of infection and treatment options
Key Points Urinary tract infections (UTIs) are some of the most common bacterial infections and are caused by both Gram-negative and Gram-positive species. UTIs are categorized into uncomplicated and complicated, and are a severe public health problem; this situation is being exacerbated by the rise in multidrug-resistant strains. Uropathogens carry multiple virulence factors involved in the pathophysiology of UTIs. These virulence factors are involved in invasion and colonization, as well as in mediating the subversion of host defences. Knowledge about the mechanism of action of these virulence factors is being used to develop new therapeutics against UTIs. Therapies that are currently in the initial stages of development include vaccines targeting bacterial factors that are essential for initial attachment and disease progression (such as adhesins, toxins, proteases and siderophores), and small-molecule inhibitors that prevent adhesin–receptor interactions. Urinary tract infections (UTIs) pose a severe public health problem and are caused by a range of pathogens. In this Review, Hultgren and colleagues discuss how basic science studies are elucidating the molecular mechanisms of UTI pathogenesis and how this knowledge is being used for the development of novel clinical treatments for UTIs. Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli , Klebsiella pneumoniae , Proteus mirabilis , Enterococcus faecalis and Staphylococcus saprophyticus . High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host–pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.
Development of a portable on-site applicable metagenomic data generation workflow for enhanced pathogen and antimicrobial resistance surveillance
Rapid, accurate and comprehensive diagnostics are essential for outbreak prevention and pathogen surveillance. Real-time, on-site metagenomics on miniaturized devices, such as Oxford Nanopore Technologies MinION sequencing, could provide a promising approach. However, current sample preparation protocols often require substantial equipment and dedicated laboratories, limiting their use. In this study, we developed a rapid on-site applicable DNA extraction and library preparation approach for nanopore sequencing, using portable devices. The optimized method consists of a portable mechanical lysis approach followed by magnetic bead-based DNA purification and automated sequencing library preparation, and resulted in a throughput comparable to a current optimal, laboratory-based protocol using enzymatic digestion to lyse cells. By using spike-in reference communities, we compared the on-site method with other workflows, and demonstrated reliable taxonomic profiling, despite method-specific biases. We also demonstrated the added value of long-read sequencing by recovering reads containing full-length antimicrobial resistance genes, and attributing them to a host species based on the additional genomic information they contain. Our method may provide a rapid, widely-applicable approach for microbial detection and surveillance in a variety of on-site settings.
Molecular mechanisms of viral oncogenesis in humans
Viral infection is a major contributor to the global cancer burden. Recent advances have revealed that seven known oncogenic viruses promote tumorigenesis through shared host cell targets and pathways. A comprehensive understanding of the principles of viral oncogenesis may enable the identification of unknown infectious aetiologies of cancer and the development of therapeutic or preventive strategies for virus-associated cancers. In this Review, we discuss the molecular mechanisms of viral oncogenesis in humans. We highlight recent advances in understanding how viral manipulation of host cellular signalling, DNA damage responses, immunity and microRNA targets promotes the initiation and development of cancer.
Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions
Key Points Vesicles derived from the outer membrane of Gram-negative bacteria, or outer-membrane vesicles (OMVs), are heterogeneous in size and composition, encapsulate soluble periplasmic content and are ubiquitously produced. The difficulty in finding a single molecular or genetic basis for OMV production is probably due to species-dependent differences in envelope architecture, environmental influences on envelope composition and redundancy of OMV-producing pathways. Mutations that subtly affect envelope crosslinking affect OMV production, whereas bacterial mutants that are unable to crosslink the envelope are typically unstable and form lysis products instead of OMVs. Lipopolysaccharide (LPS) subtypes also affect the levels of OMV production, as well as OMV cargo recruitment. OMV cargo may be enriched or excluded compared with its abundance in the bacterial envelope, suggesting that cargo recruitment is a regulated rather than stochastic process. Well-characterized cargoes include virulence factors, antibiotic-degrading enzymes, surface adherence factors, proteases and enzymes that are important for nutrient acquisition. OMVs can serve in bacterial communities as 'public goods' by distributing enzymes that break down extracellular material into nutrients, by recruiting iron, by acting as decoys for bacteriophages or antibiotics and by transferring DNA between cells. The versatile characteristics of OMVs and their immunomodulatory properties can be exploited for bioengineering applications and vaccine development. In this Review, Schwechheimer and Kuehn describe recent developments in elucidating the mechanisms of biogenesis and cargo selection of the outer-membrane vesicles (OMVs) produced by Gram-negative bacteria. They also discuss the functions of OMVs in bacterial physiology and during pathogenesis. Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles.
Neisseria gonorrhoeae host adaptation and pathogenesis
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
The enigmatic archaeal virosphere
Key Points Crenarchaeal viruses display a remarkable diversity of unexpected, complex morphologies and have genomes with largely unique content. The known viruses of extremely halophilic and methanogenic archaea include some morphologies of crenarchaeal viruses and all known morphologies of bacterial dsDNA viruses. Archaeal viruses display many unique features that have thus far not been observed elsewhere in nature, including A-form DNA in viral particles, virion envelopes containing lipids in a horseshoe conformation and special gateway structures for virion release. Certain aspects of the virus–host interaction in archaea, such as release of enveloped virions by budding, resemble mechanisms that are employed by eukaryotic enveloped viruses. Archaeal viruses have a major role in the ocean sediments by killing their hosts, which results in the release of ∼0.3 to 0.5 gigatonnes of carbon per year globally. Comparative genomics analyses revealed close evolutionary relationships between archaeal viruses and capsidless mobile genetic elements. One of the most prominent features of archaea is the extraordinary diversity of their viruses. In this Review, Prangishvili et al . summarize their morphological diversity, the molecular biology of their life cycles and virus–host interactions, and discuss their evolution and their role in the global virosphere. One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus–host interactions, including interactions with archaeal CRISPR–Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing data into actionable information. There is, however, a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonization, comparability and validation. In this Review, we outline the current landscape of WGS pipelines and applications, and set out best practices for M.tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting.