Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24,142
result(s) for
"Adenosine - genetics"
Sort by:
Physiology and effects of nucleosides in mice lacking all four adenosine receptors
by
Jacobson, Kenneth A.
,
Reitman, Marc L.
,
Liu, Naili
in
Adenosine
,
Adenosine kinase
,
Adenosine receptors
2019
Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1-/-;Adora2a-/-;Adora2b-/-;Adora3-/- (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5'-monophosphate (AMP)-induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature.
Journal Article
FIONA1-mediated methylation of the 3’UTR of FLC affects FLC transcript levels and flowering in Arabidopsis
by
Edwards, Ashleigh
,
Dolde, Ulla
,
Jia, Guifang
in
3' Untranslated regions
,
3' Untranslated Regions - genetics
,
Adenosine - genetics
2022
Adenosine bases of RNA can be transiently modified by the deposition of a methyl-group to form N 6 -methyladenosine (m 6 A). This adenosine-methylation is an ancient process and the enzymes involved are evolutionary highly conserved. A genetic screen designed to identify suppressors of late flowering transgenic Arabidopsis plants overexpressing the miP1a microProtein yielded a new allele of the FIONA1 (FIO1) m 6 A-methyltransferase. To characterize the early flowering phenotype of fio1 mutant plants we employed an integrative approach of mRNA-seq, Nanopore direct RNA-sequencing and meRIP-seq to identify differentially expressed transcripts as well as differentially methylated RNAs. We provide evidence that FIO1 is the elusive methyltransferase responsible for the 3’-end methylation of the FLOWERING LOCUS C ( FLC ) transcript. Furthermore, our genetic and biochemical data suggest that 3’-methylation stabilizes FLC mRNAs and non-methylated FLC is a target for rapid degradation.
Journal Article
HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer
2021
As one of the deadliest malignancies, gastric cancer (GC) is often accompanied by a low 5-year survival following initial diagnosis, which accounts for a substantial proportion of cancer-related deaths each year worldwide. Altered epigenetic modifications of cancer oncogenes and tumor suppressor genes emerge as novel mechanisms have been implicated the pathogenesis of GC. In the current study, we aim to elucidate whether histone deacetylase 3 (HDAC3) exerts oncogenic role in GC, and investigate the possible mechanism. Initially, we collected 64 paired cancerous and noncancerous tissues surgically resected from GC patients. Positive expression of HDAC3, FTO, and MYC in the tissues was measured using Immunohistochemistry. Meanwhile, GC cell line BGC-823/AGS was selected and treated with lentivirus vectors for alteration of HDAC3, FTO, or FOXA2 expressions, followed by detection on mRNA and protein levels of HDAC3, FOXA2, FTO, and MYC using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The results demonstrated that the expressions of HDAC3, FTO and MYC were upregulated, while FOXA2 expression was downregulated in GC tissues and cells. After that, the cell viability, migration, and invasion of GC cells were assessed by CCK-8 and Transwell assays, revealing that HDAC3 accelerated GC cell viability, migration and invasion by degrading FOXA2. Subsequently, the binding relationship among HDAC3, FOXA2, FTO, and MYC was assessed by assays of immunoprecipitation, dual-luciferase reporter gene, and chromatin immunoprecipitation assay. Methylation of m6A mRNA in GC cells was detected via gene-specific m6A qPCR and dot-blot assays. The transcription factor FOXA2 was found to bind to the FTO gene promoter and decreased its expression, while FTO stabilized MYC mRNA by reducing m6A methylation of MYC in GC cells. In addition, HDAC3 was observed to maintain the FTO/m6A/MYC signaling and regulated GC progression, which was also supported by in vivo animal study data of GC cell tumorigenesis in nude mice. These key observations uncover the tumor-initiating activities of HDAC3 in GC through its regulation on FOXA2-mediated FTO/m6A/MYC axis, highlighting the potential of therapeutically targeting epigenetic modifications to combat GC.
Journal Article
A cytosine deaminase for programmable single-base RNA editing
2019
Programmable RNA editing enables reversible recoding of RNA information for research and disease treatment. Previously, we developed a programmable adenosine-to-inosine (A-to-I) RNA editing approach by fusing catalytically inactivate RNA-targeting CRISPR-Cas13 (dCas13) with the adenine deaminase domain of ADAR2. Here, we report a cytidine-to-uridine (C-to-U) RNA editor, referred to as RNA Editing for Specific C-to-U Exchange (RESCUE), by directly evolving ADAR2 into a cytidine deaminase. RESCUE doubles the number of mutations targetable by RNA editing and enables modulation of phosphosignaling-relevant residues. We apply RESCUE to drive β-catenin activation and cellular growth. Furthermore, RESCUE retains A-to-I editing activity, enabling multiplexed C-to-U and A-to-I editing through the use of tailored guide RNAs.
Journal Article
Compact RNA editors with small Cas13 proteins
2022
CRISPR–Cas13 systems have been developed for precise RNA editing, and can potentially be used therapeutically when temporary changes are desirable or when DNA editing is challenging. We have identified and characterized an ultrasmall family of Cas13b proteins—Cas13bt—that can mediate mammalian transcript knockdown. We have engineered compact variants of REPAIR and RESCUE RNA editors by functionalizing Cas13bt with adenosine and cytosine deaminase domains, and demonstrated packaging of the editors within a single adeno-associated virus.
Compact Cas13 proteins are used to design RNA editors that fit into a single adeno-associated virus.
Journal Article
RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself
by
Higuchi, Miyoko
,
Liddicoat, Brian J.
,
Seeburg, Peter H.
in
3' Untranslated Regions
,
Activation
,
Adenosine - genetics
2015
Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1E861A, where E861A denotes Glu861→Ala861). Adar1E861A/E861A embryos died at ∼E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)–sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3′ untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1E861A/E861A were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts.
Journal Article
Association of the Anxiogenic and Alerting Effects of Caffeine with ADORA2A and ADORA1 Polymorphisms and Habitual Level of Caffeine Consumption
by
Heatherley, Susan V
,
Mullings, Emma L
,
Evershed, Richard P
in
631/208/726/649
,
631/378/1689/1300
,
631/477
2010
Caffeine, a widely consumed adenosine A
1
and A
2A
receptor antagonist, is valued as a psychostimulant, but it is also anxiogenic. An association between a variant within the
ADORA2A
gene (rs5751876) and caffeine-induced anxiety has been reported for individuals who habitually consume little caffeine. This study investigated whether this single nucleotide polymorphism (SNP) might also affect habitual caffeine intake, and whether habitual intake might moderate the anxiogenic effect of caffeine. Participants were 162 non-/low (NL) and 217 medium/high (MH) caffeine consumers. In a randomized, double-blind, parallel groups design they rated anxiety, alertness, and headache before and after 100 mg caffeine and again after another 150 mg caffeine given 90 min later, or after placebo on both occasions. Caffeine intake was prohibited for 16 h before the first dose of caffeine/placebo. Results showed greater susceptibility to caffeine-induced anxiety, but not lower habitual caffeine intake (indeed coffee intake was higher), in the rs5751876 TT genotype group, and a reduced anxiety response in MH
vs
NL participants irrespective of genotype. Apart from the almost completely linked
ADORA2A
SNP rs3761422, no other of eight
ADORA2A
and seven
ADORA1
SNPs studied were found to be clearly associated with effects of caffeine on anxiety, alertness, or headache. Placebo administration in MH participants decreased alertness and increased headache. Caffeine did not increase alertness in NL participants. With frequent consumption, substantial tolerance develops to the anxiogenic effect of caffeine, even in genetically susceptible individuals, but no net benefit for alertness is gained, as caffeine abstinence reduces alertness and consumption merely returns it to baseline.
Journal Article
N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer
by
Yao, Weifan
,
Li, Yalun
,
Sun, Tong
in
Adenosine - analogs & derivatives
,
Adenosine - genetics
,
Adenosine - metabolism
2021
Background
Accumulating evidence shows that N6-methyladenine (m
6
A) modulators contribute to the etiology and progression of colorectal cancer (CRC). However, the exact mechanisms of m
6
A reader involved in glycolytic metabolism remain vague. This article aimed to crosstalk the m
6
A reader with glycolytic metabolism and reveal a new mechanism for the progression of CRC.
Methods
The relationship between candidate lncRNA and m
6
A reader was analyzed by bioinformatics, ISH and IHC assays. In vivo and in vitro studies (including MTT, CFA, trans-well, apoptosis, western blot, qRT-PCR and xenograft mouse models) were utilized to explore the biological functions of these indicators. Lactate detection, ATP activity detection and ECAR assays were used to verify the biological function of the downstream target. The bioinformatics, RNA stability, RIP experiments and RNA pull-down assays were used to explore the potential molecular mechanisms.
Results
We identified that the crosstalk of the m
6
A reader IMP2 with long-noncoding RNA (lncRNA) ZFAS1 in an m
6
A modulation-dependent manner, subsequently augmented the recruitment of Obg-like ATPase 1 (OLA1) and adenosine triphosphate (ATP) hydrolysis and glycolysis during CRC proliferation and progression. Specifically, IMP2 and ZFAS1 are significantly overexpressed with elevated m
6
A levels in CRC cells and paired CRC cohorts (
n
= 144). These indicators could be independent biomarkers for CRC prognostic prediction. Notably, IMP2 regulated ZFAS1 expression and enhanced CRC cell proliferation, colony formation, and apoptosis inhibition; thus, it was oncogenic. Mechanistically, ZFAS1 is modified at adenosine +843 within the RGGAC/RRACH element in an m
6
A-dependent manner. Thus, direct interaction between the KH3–4 domain of IMP2 and ZFAS1 where IMP2 serves as a reader for m
6
A-modified ZFAS1 and promotes the RNA stability of ZFAS1 is critical for CRC development. More importantly, stabilized ZFAS1 recognizes the OBG-type functional domain of OLA1, which facilitated the exposure of ATP-binding sites (NVGKST, 32–37), enhanced its protein activity, and ultimately accelerated ATP hydrolysis and the Warburg effect.
Conclusions
Our findings reveal a new cancer-promoting mechanism, that is, the critical modulation network underlying m
6
A readers stabilizes lncRNAs, and they jointly promote mitochondrial energy metabolism in the pathogenesis of CRC.
Journal Article
Baseline adenosine receptor mRNA expression in blood as predictor of response to methotrexate therapy in patients with rheumatoid arthritis
by
Singh, Ankita
,
Misra, Ramnath
,
Aggarwal, Amita
in
Adenosine
,
Gene expression
,
Rheumatoid arthritis
2019
Methotrexate (MTX) reduces inflammation by increasing extracellular adenosine levels in rheumatoid arthritis (RA) patients. Adenosine acts via G-protein coupled receptors; ADORA1, ADORA2a, ADORA2b and ADORA3. We studied if baseline expression of whole blood adenosine receptors can predict response to MTX. RA patients [American College of Rheumatology/European-League-Against-Rheumatism (EULAR) 2010 criteria], Disease modifying anti-rheumatic drug (DMARD) naïve with active disease [Disease Activity Score 28 (DAS28) > 3.2] were enrolled. Blood samples were collected at baseline (n = 100) and at 4 months after therapy (n = 50). Patients were treated with MTX monotherapy. Based on EULAR response, patients were categorized into three groups i.e. good, moderate and non-responders. Adenosine receptors gene expression (ADORA1, ADORA2a, ADORA2b and ADORA3) in whole-blood RNA was measured using real-time PCR. HPRT1 was used as housekeeping gene. Receptor expression at baseline was correlated with response to MTX. All values are expressed as median (interquartile range). Hundred patients [87% females; age 40 (18) years]; duration of disease 24 (24.75) months; DAS28 4.7 (1.25) were enrolled. Fifty-one were classified as good, 28 moderate and 21 as non-responders. No expression of ADORA1 and ADORA2b was detected. Significant difference was observed in the expression levels of ADORA3 between good vs non-responder (P = 0.03) and moderate vs non-responder (P = 0.002). On ROC curve analysis, ADORA3 with cut-off value of less than − 0.60 (ΔCt) predicted non-response to MTX treatment (AUC: 0.7, P = 0.006). ADORA3 mRNA levels in whole blood may serve as a biomarker of response to MTX.
Journal Article
Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing
by
Tran, Tuan M.
,
Zeng, Chao
,
Hato, Takashi
in
Acute Kidney Injury - genetics
,
Acute Kidney Injury - metabolism
,
Acute Kidney Injury - pathology
2024
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Journal Article