Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
73,532
result(s) for
"Antibodies, Viral"
Sort by:
Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
2020
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy
1
,
2
. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml
−1
. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, ‘all RBD-down’ conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.
A diverse collection of potent neutralizing antibodies against the SARS-CoV-2 spike protein have been isolated from five patients with severe COVID-19 and high serum neutralization titres.
Journal Article
Evolution of antibody immunity to SARS-CoV-2
2021
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models
1
,
2
. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.
In a cohort of 87 individuals with COVID-19, the memory B cell response at 6.2 months after the onset of disease evolves in a manner that is consistent with the persistence of SARS-CoV-2 antigen.
Journal Article
Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 2020
1
,
2
. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which we identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. One antibody (named S309) potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2, by engaging the receptor-binding domain of the S glycoprotein. Using cryo-electron microscopy and binding assays, we show that S309 recognizes an epitope containing a glycan that is conserved within the
Sarbecovirus
subgenus, without competing with receptor attachment. Antibody cocktails that include S309 in combination with other antibodies that we identified further enhanced SARS-CoV-2 neutralization, and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and antibody cocktails containing S309 for prophylaxis in individuals at a high risk of exposure or as a post-exposure therapy to limit or treat severe disease.
The monoclonal antibody S309, identified from memory B cells of an individual infected with SARS-CoV in 2003, or antibody cocktails that contain this antibody potently neutralize SARS-CoV-2.
Journal Article
Broad dengue neutralization in mosquitoes expressing an engineered antibody
by
Paradkar, Prasad N.
,
Akbari, Omar S.
,
Klein, Melissa J.
in
Aedes - genetics
,
Aedes - virology
,
Animal biology
2020
With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.
Journal Article
Deployment of convalescent plasma for the prevention and treatment of COVID-19
by
Hod, Eldad A.
,
Sullivan, David J.
,
Paneth, Nigel
in
Antibodies
,
Antibodies, Viral - administration & dosage
,
Antibodies, Viral - blood
2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spurred a global health crisis. To date, there are no proven options for prophylaxis for those who have been exposed to SARS-CoV-2, nor therapy for those who develop COVID-19. Immune (i.e., \"convalescent\") plasma refers to plasma that is collected from individuals following resolution of infection and development of antibodies. Passive antibody administration through transfusion of convalescent plasma may offer the only short-term strategy for conferring immediate immunity to susceptible individuals. There are numerous examples in which convalescent plasma has been used successfully as postexposure prophylaxis and/or treatment of infectious diseases, including other outbreaks of coronaviruses (e.g., SARS-1, Middle East respiratory syndrome [MERS]). Convalescent plasma has also been used in the COVID-19 pandemic; limited data from China suggest clinical benefit, including radiological resolution, reduction in viral loads, and improved survival. Globally, blood centers have robust infrastructure for undertaking collections and constructing inventories of convalescent plasma to meet the growing demand. Nonetheless, there are nuanced challenges, both regulatory and logistical, spanning donor eligibility, donor recruitment, collections, and transfusion itself. Data from rigorously controlled clinical trials of convalescent plasma are also few, underscoring the need to evaluate its use objectively for a range of indications (e.g., prevention vs. treatment) and patient populations (e.g., age, comorbid disease). We provide an overview of convalescent plasma, including evidence of benefit, regulatory considerations, logistical work flow, and proposed clinical trials, as scale-up is brought underway to mobilize this critical resource.
Journal Article
Enhanced neonatal Fc receptor function improves protection against primate SHIV infection
by
Bao, Saran
,
Haase, Ashley T.
,
Rudicell, Rebecca S.
in
631/250
,
Administration, Rectal
,
Animals
2014
A mutation in VRC01, a broadly neutralizing, HIV-1-specific antibody, confers enhanced binding to the neonatal Fc receptor, increasing the antibody half-life in the serum and localization in mucosal tissues, where it provides superior protection against rectal simian HIV-1 infection in macaques.
Enhanced anti-HIV activity in mutant VRC01 antibody
The recent discovery of broad and potent anti-HIV-1 antibodies has renewed interest in their use for passive protection against human immunodeficiency virus-1 in humans. This paper describes a mutation in the HIV-specific broadly neutralizing antibody VRC01 that confers enhanced binding to the neonatal Fc receptor and increases the antibody half-life in serum and mucosal tissues. It conferred superior protection in a rectal simian-HIV challenge model in macaques when compared to wild-type VRC01.
To protect against human immunodeficiency virus (HIV-1) infection, broadly neutralizing antibodies (bnAbs) must be active at the portals of viral entry in the gastrointestinal or cervicovaginal tracts. The localization and persistence of antibodies at these sites is influenced by the neonatal Fc receptor (FcRn)
1
,
2
, whose role in protecting against infection
in vivo
has not been defined. Here, we show that a bnAb with enhanced FcRn binding has increased gut mucosal tissue localization, which improves protection against lentiviral infection in non-human primates. A bnAb directed to the CD4-binding site of the HIV-1 envelope (Env) protein (denoted VRC01)
3
was modified by site-directed mutagenesis to increase its binding affinity for FcRn. This enhanced FcRn-binding mutant bnAb, denoted VRC01-LS, displayed increased transcytosis across human FcRn-expressing cellular monolayers
in vitro
while retaining FcγRIIIa binding and function, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, at levels similar to VRC01 (the wild type). VRC01-LS had a threefold longer serum half-life than VRC01 in non-human primates and persisted in the rectal mucosa even when it was no longer detectable in the serum. Notably, VRC01-LS mediated protection superior to that afforded by VRC01 against intrarectal infection with simian–human immunodeficiency virus (SHIV). These findings suggest that modification of FcRn binding provides a mechanism not only to increase serum half-life but also to enhance mucosal localization that confers immune protection. Mutations that enhance FcRn function could therefore increase the potency and durability of passive immunization strategies to prevent HIV-1 infection.
Journal Article
Convergent antibody responses to SARS-CoV-2 in convalescent individuals
2020
During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-2
1
–
5
. Here we report on 149 COVID-19-convalescent individuals. Plasma samples collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres; titres were less than 50 in 33% of samples, below 1,000 in 79% of samples and only 1% of samples had titres above 5,000. Antibody sequencing revealed the expansion of clones of RBD-specific memory B cells that expressed closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on the RBD neutralized the virus with half-maximal inhibitory concentrations (IC
50
values) as low as 2 ng ml
−1
. In conclusion, most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Although rare, antibodies against the receptor-binding domain of SARS-CoV-2 that showed potent antiviral activity were obtained from all tested convalescent individuals, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Journal Article
Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants
2021
The emergence of SARS-CoV-2 variants is jeopardizing the effectiveness of current vaccines and limiting the application of monoclonal antibody-based therapy for COVID-19 (refs.
1
,
2
). Here we analysed the memory B cells of five naive and five convalescent people vaccinated with the BNT162b2 mRNA vaccine to investigate the nature of the B cell and antibody response at the single-cell level. Almost 6,000 cells were sorted, over 3,000 cells produced monoclonal antibodies against the spike protein and more than 400 cells neutralized the original SARS-CoV-2 virus first identified in Wuhan, China. The B.1.351 (Beta) and B.1.1.248 (Gamma) variants escaped almost 70% of these antibodies, while a much smaller portion was impacted by the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants. The overall loss of neutralization was always significantly higher in the antibodies from naive people. In part, this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in people who were convalescent and generated potent and broadly neutralizing antibodies. Our data suggest that people who are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control emerging SARS-CoV-2 variants.
Single-cell-level analysis of memory B cells and their response to vaccination against all SARS-CoV-2 variants of concern in individuals who either had or had not been previously exposed to the virus.
Journal Article
Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection
by
Lanzavecchia, Antonio
,
Hewson, Roger
,
Jaconi, Stefano
in
Animals
,
Antibodies
,
Antibodies, Monoclonal - chemistry
2016
Zika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool. In contrast, antibodies against E protein domain l/ll (EDI/II) were cross-reactive and, although poorly neutralizing, potently enhanced ZIKV and DENV infection in vitro and lethally enhanced DENV disease in mice. Memory T cells against NS1 or E proteins were poorly cross-reactive, even in donors preexposed to DENV. The most potent neutralizing antibodies were ZIKV-specific and targeted EDIII or quaternary epitopes on infectious virus. An EDIII-specific antibody protected mice from lethal ZIKV infection, illustrating the potential for antibody-based therapy.
Journal Article
The role of IgG Fc receptors in antibody-dependent enhancement
2020
Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic.Antibody-dependent enhancement (ADE) has been described as a mechanism that contributes to the pathogenesis of dengue virus infection. Limited evidence also suggests that it can also occur in other viral infections. Here, the authors explore the history of the ADE phenomenon, discuss the diversity of Fc effector functions and consider its potential relevance in the context of SARS-CoV-2 infection.
Journal Article