Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,284 result(s) for "Antifungal Agents - pharmacokinetics"
Sort by:
Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs
A series of methyl β-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich’s ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.
Pharmacokinetics and Pharmacodynamics of Posaconazole
Posaconazole is typically used for preventing invasive yeast and mold infections such as invasive aspergillosis in high-risk immunocompromised patients. The oral suspension was the first released formulation and many pharmacokinetic and pharmacodynamic studies of this formulation have been published. Erratic absorption profiles associated with this formulation were widely reported. Posaconazole exposure was found to be significantly influenced by food and many gastrointestinal conditions, including pH and motility. As a result, low posaconazole plasma concentrations were obtained in large groups of patients. These issues of erratic absorption urged the development of the subsequently marketed delayed-release tablet, which proved to be associated with higher and more stable exposure profiles. Shortly thereafter, an intravenous formulation was released for patients who are not able to take oral formulations. Both new formulations require a loading dose on day 1 to achieve high posaconazole concentrations more quickly, which was not possible with the oral suspension. So far, there appears to be no evidence of increased toxicity correlated to the higher posaconazole exposure achieved with the regimen for these formulations. The higher systemic availability of posaconazole for the delayed-release tablet and intravenous formulation have resulted in these two formulations being preferable for both prophylaxis and treatment of invasive fungal disease. This review aimed to integrate the current knowledge on posaconazole pharmacokinetics, pharmacodynamics, major toxicity, existing resistance, clinical experience in special populations, and new therapeutic strategies in order to get a clear understanding of the clinical use of this drug.
Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent
Isavuconazole is a new extended-spectrum triazole with activity against yeasts, molds, and dimorphic fungi. It is approved for the treatment of invasive aspergillosis and mucormycosis. Advantages of this triazole include the availability of a water-soluble intravenous formulation, excellent bioavailability of the oral formulation, and predictable pharmacokinetics in adults. A randomized, double-blind comparison clinical trial for treatment of invasive aspergillosis found that the efficacy of isavuconazole was noninferior to that of voriconazole. An open-label trial that studied primary as well as salvage therapy of invasive mucormycosis showed efficacy with isavuconazole that was similar to that reported for amphotericin B and posaconazole. In patients in these studies, as well as in normal volunteers, isavuconazole was well tolerated, appeared to have few serious adverse effects, and had fewer drug–drug interactions than those noted with voriconazole. As clinical experience increases, the role of this new triazole in the treatment of invasive fungal infections will be better defined.
Echinocandin Resistance in Candida
Invasive fungal infections are an important infection concern for patients with underlying immunosuppression. Antifungal therapy is a critical component of patient care, but therapeutic choices are limited due to few drug classes. Antifungal resistance, especially among Candida species, aggravates the problem. The echinocandin drugs (micafungin, anidulafungin, and caspofungin) are the preferred choice to treat a range of candidiasis. They target the fungal-specific enzyme glucan synthase, which is responsible for the biosynthesis of a major cell wall polymer. Therapeutic failure involves acquisition of resistance, although it is a rare event among most Candida species. However, in some settings, higher-level resistance has been reported among Candida glabrata, which is also frequently resistant to azole drugs, resulting in difficult-to-treat multidrug-resistant strains. The mechanism of echinocandin resistance involves amino acid changes in \"hot spot\" regions of FKS-encoded subunits of glucan synthase, which decreases the sensitivity of enzyme to drug, resulting in higher minimum inhibitory concentration values. The cellular processes promoting the formation of resistant FKS strains involve complex stress response pathways that yield a variety of adaptive compensatory genetic responses. Standardized broth microdilution techniques can be used to distinguish FKS mutant strains from wild type, but testing C. glabrata with caspofungin should be approached cautiously. Finally, clinical factors that promote echinocandin resistance include prophylaxis, host reservoirs including biofilms in the gastrointestinal tract, and intra-abdominal infections. An understanding of clinical and molecular factors that promote echinocandin resistance is critical to develop better diagnostic tools and therapeutic strategies to overcome resistance.
Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: in vitro and ex vivo evaluation
In this article, formulation studies for terbinafine hydrochloride nanoemulsions, prepared by high-energy ultrasonication technique, are described. Pseudo-ternary phase diagram was constructed in order to find out the optimal ratios of oil and surfactant/co-solvent mixture for nanoemulsion production. Clove and olive oils were selected as oil phase. Based on the droplet size evaluation, maximum nanoemulsion region were determined for formulation development. Further characterization included polydispersity index (PDI), zeta potential, Fourier transform infrared (FT-IR) spectroscopy, morphology, pH, viscosity, refractive index, ex vivo skin permeation, skin irritation, and histopathological examination. Droplet sizes of optimized formulations were in colloidal range. PDI values below 0.35 indicated considerably homogeneous nanoemulsions. Zeta potential values were from 13.2 to 18.1 mV indicating good stability, which was also confirmed by dispersion stability studies. Ex vivo permeation studies revealed almost total skin permeation of terbinafine hydrochloride from the nanoemulsions (96-98%) in 6 hours whereas commercial product reached only 57% permeation at the same time. Maximum drug amounts were seen in epidermis and dermis layers. Skin irritation and histopathological examination demonstrated dermatologically safe formulations. In conclusion, olive oil and clove oil-based nanoemulsion systems have potential to serve as promising carriers for topical terbinafine hydrochloride delivery.
Pharmacokinetics and Dosing of Anti-infective Drugs in Patients on Extracorporeal Membrane Oxygenation: A Review of the Current Literature
Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass device that is used to temporarily support the most critically ill of patients with respiratory and/or cardiac failure. Infection and its sequelae may be an indication for ECMO or infections may be acquired while on ECMO and are associated with a mortality >50%. Effective therapy requires optimal dosing. However, optimal dosing can be different in patients on ECMO because the ECMO circuit can alter drug pharmacokinetics. This review assessed the current literature for pharmacokinetic data and subsequent dosing recommendations for anti-infective drugs in patients on ECMO. We searched the PubMed and Embase databases (1965 to February 2016) and included case reports, case series, or studies that provided pharmacokinetic data for anti-infective drugs including antibiotics, antifungals, and antivirals being used to treat patients of all age groups on ECMO. Pharmacokinetic parameters and dosing recommendations based on these data are presented. The majority of data on this topic comes from neonatal studies of antibiotics from the 1980s and 1990s. These studies generally demonstrate a larger volume of distribution due to ECMO and therefore higher doses are needed initially. More adult data are now emerging, but with a predominance of case reports and case series without comparison with critically ill controls. The available pharmacokinetic analyses do suggest that volume of distribution and clearance are unchanged in the adult population, and therefore dosing recommendations largely remain unchanged. There is a lack of data on children older than 1 year of age. The data support the importance of therapeutic drug monitoring when available in this population of patients. This review found reasonably robust dosing recommendations for some drugs and scant or no data for other important anti-infectives. In order to better determine optimal dosing for patients on ECMO, a systematic approach is needed. Approaches that combine ex vivo ECMO experiments, animal studies, specialized pharmacokinetic modeling, and human clinical trials are being developed.
QSPR and QSTR analysis to explore pharmacokinetic and toxicity properties of antifungal drugs through topological descriptors
COVID-19 patients often develop serious fungal infections like Aspergillosis, Candidiasis, and Mucormycosis, which are treated with antifungal drugs like Amphotericin B, Posaconazole, and Isavuconazole. However, these treatments are often insufficient, leading researchers to explore drug combinations and analogs. In theoretical chemistry, a chemical molecule is converted into an isomorphic molecular graph, represented as G (V, E) by considering atom set V as vertices and bond set E as edges. Quantitative structure–activity/property/toxicity relationships (QSAR, QSPR, QSTR) modelling is a widely recognized discipline that correlates physicochemical and molecular descriptors with a drug’s bioactivity to predict its standard pharmacological properties. In this article, the aforementioned drugs, as well as some Amphotericin B analogs, with their properties, are considered for QSPR/QSTR analysis. The QSPR/QSTR analysis is carried out using linear regression between the computed topological indices (based on degree and neighbourhood degree sum) and pharmacokinetic (ADMET) and toxicity properties (LD 50 ) of these drugs. The analysis reveals a strong correlation between the topological indices and the pharmacokinetic and toxicity properties of the drugs and their analogs. These insights are crucial for advancing more effective antifungal treatments, especially for COVID-19-related infections.
Clinical Relevance of the Pharmacokinetic Interactions of Azole Antifungal Drugs with Other Coadministered Agents
There are currently a number of licensed azole antifungal drugs; however; only 4 (namely, fluconazole, itraconazole, posaconazole, and voriconazole) are used frequently in a clinical setting for prophylaxis or treatment of systemic fungal infections. In this article, we review the pharmacokinetic interactions of these azole antifungal drugs with other coadministered agents. We describe these (2-way) interactions and the extent to which metabolic pathways and/or other supposed mechanisms are involved in these interactions. This article provides an overview of all published drug-drug interactions in humans (either healthy volunteers or patients), and on the basis of these findings, we have developed recommendations for managing the specific interactions.
Challenging Recommended Oral and Intravenous Voriconazole Doses for Improved Efficacy and Safety: Population Pharmacokinetics—Based Analysis of Adult Patients With Invasive Fungal Infections
Background. Recommended oral voriconazole (VRC) doses are lower than intravenous doses. Because plasma concentrations impact efficacy and safety of therapy, optimizing individual drug exposure may improve these outcomes. Methods. A population pharmacokinetic analysis (NONMEM) was performed on 505 plasma concentration measurements involving 55 patients with invasive mycoses who received recommended VRC doses. Results. A 1-compartment model with first-order absorption and elimination best fitted the data. VRC clearance was 5.2 L/h, the volume of distribution was 92 L, the absorption rate constant was 1.1 hour -1 , and oral bioavailability was 0.63. Severe cholestasis decreased VRC elimination by 52%. A large interpatient variability was observed on clearance (coefficient of variation [CV], 40%) and bioavailability (CV 84%), and an interoccasion variability was observed on bioavailability (CV, 93%). Lack of response to therapy occurred in 12 of 55 patients (22%), and grade 3 neurotoxicity occurred in 5 of 55 patients (9%). A logistic multivariate regression analysis revealed an independent association between VRC trough concentrations and probability of response or neurotoxicity by identifying a therapeutic range of 1.5 mg/L (>85% probability of response) to 4.5 mg/L (<15% probability of neurotoxicity). Population-based simulations with the recommended 200 mg oral or 300 mg intravenous twice-daily regimens predicted probabilities of 49% and 87%, respectively, for achievement of 1.5 mg/L and of 8% and 37%, respectively, for achievement of 4.5 mg/L. With 300—400 mg twice-daily oral doses and 200—300 mg twice-daily intravenous doses, the predicted probabilities of achieving the lower target concentration were 68%—78% for the oral regimen and 70%—87% for the intravenous regimen, and the predicted probabilities of achieving the upper target concentration were 19%—29% for the oral regimen and 18%— 37% for the intravenous regimen. Conclusions. Higher oral than intravenous VRC doses, followed by individualized adjustments based on measured plasma concentrations, improve achievement of the therapeutic target that maximizes the probability of therapeutic response and minimizes the probability of neurotoxicity. These findings challenge dose recommendations for VRC.
Current Concepts in Antifungal Pharmacology
The introduction of new antifungal agents (eg, echinocandins, second-generation triazoles) in the past decade has transformed the management of invasive mycoses to the point that drug toxicity is no longer the major limiting factor in treatment. Yet, many of these newer antifungal agents have important limitations in their spectrum of activity, pharmacokinetics, and unique predisposition for pharmacokinetic drug-drug interactions and unusual toxicities associated with long-term use. This article reviews key pharmacological aspects of systemic antifungal agents as well as evolving strategies, such as pharmacokinetic-pharmacodynamic optimization and therapeutic drug monitoring, to improve the safety and efficacy of systemic antifungal therapy.