Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,786 result(s) for "Bacteroidetes - genetics"
Sort by:
Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension
Hypertension has become a major risk factor for many diseases, including cardiovascular, cerebrovascular and kidney disorders. It has been reported that the composition of human gut microbiota is changed during the progression of cardiovascular and kidney diseases. The current study aimed to qualitatively and quantitatively compare the composition of gut microbiota between patients with hypertension and healthy controls. Fecal samples were collected from 50 patients diagnosed with grade 3 hypertension and 30 healthy controls. Touchdown PCR-denaturing gradient gel electrophoresis with primers specifically targeting the V3 region of 16S ribosomal RNA, and quantitative PCR, were performed to characterize all the samples. High-throughput sequencing of the V3-V4 regions was performed on 30 randomly selected samples. By comparing diversity and richness indices, the gut microbiome of the hypertensive individuals was found to be more diverse than that of the healthy controls. Among the main bacterial phlya that reside in the gut, Bacteroidetes, Firmicutes and Proteobacteria were dominant in all the samples; however the Firmicutes to Bacteroidetes ratio was variable, with a significant increase in the patients with hypertension compared with the healthy control group. In addition, at the genus level, there was an increased abundance of Prevotella_9, Megasphaera, Parasutterella and Escherichia-Shigella in patients with hypertension, while Bacteroides and Faecalibacterium were decreased. These results suggested that the human gut microbiota is altered in hypertension, and understanding the mechanism of these changes in microbial composition may open up new insights, and help to treat hypertension and other related diseases.
Changes in Microbiota Profiles After Prolonged Frozen Storage of Stool Suspensions
Fecal microbiota transplantation (FMT) is recommended as safe and effective treatment for recurrent infections. Freezing the FMT preparation simplifies the process, allowing a single stool sample to be used for multiple receivers and over an extended period of time. We aimed to assess the effect of long-term frozen storage on bacterial taxonomic profiles of a stool suspension prepared for FMT. DNA was extracted from a stool suspension before freezing and sequentially during the 18-month storage period at -80°C. Two different protocols were used for DNA extraction. The first relied on a classical mechanical and chemical cell disruption to extract both intra- and extracellular DNA; the second included specific pre-treatments aimed at removing free DNA and DNA from human and damaged bacterial cells. Taxonomic profiling of bacterial communities was performed by sequencing of V3-V4 16S rRNA gene amplicons. Microbiota profiles obtained by whole DNA extraction procedure remained relatively stable during frozen storage. When DNA extraction procedure included specific pre-treatments, microbiota similarity between fresh and frozen samples progressively decreased with longer frozen storage times; notably, the abundance of Bacteroidetes decreased in a storage duration-dependent manner. The abundance of Firmicutes, the main butyrate producers in the colon, were not much affected by frozen storage for up to 1 year. Our data show that metataxonomic analysis of frozen stool suspensions subjected to specific pre-treatments prior to DNA extractions might provide an interesting indication of bacterial resistance to stress conditions and thus of chances of survival in FMT recipients.
A starch‐ and sucrose‐reduced dietary intervention in irritable bowel syndrome patients produced a shift in gut microbiota composition along with changes in phylum, genus, and amplicon sequence variant abundances, without affecting the micro‐RNA levels
Background/Aim A randomized clinical trial with a starch‐ and sucrose‐reduced diet (SSRD) in irritable bowel syndrome (IBS) patients has shown clear improvement of participants' symptoms. The present study aimed to explore the effects of the SSRD on the gut microbiota and circulating micro‐RNA in relation to nutrient intake and gastrointestinal symptoms. Methods IBS patients were randomized to a 4‐week SSRD intervention (n = 80) or control group (n = 25); habitual diet). At baseline and 4 weeks, blood and fecal samples, 4 day‐dietary records, and symptom questionnaires were collected, that is, Rome IV questionnaires, IBS‐symptom severity score (IBS‐SSS) and visual analog scale for IBS (VAS‐IBS). Micro‐RNA was analyzed in blood and microbiota in faeces by 16S rRNA from regions V1–V2. Results The alpha diversity was unaffected, whereas beta diversity was decreased (p < 0.001) along with increased abundance of Proteobacteria (p = 0.0036) and decreased abundance of Bacteroidetes phyla (p < 0.001) in the intervention group at 4 weeks. Few changes were noted in the controls. The shift in beta diversity and phyla abundance correlated with decreased intakes of carbohydrates, disaccharides, and starch and increased fat and protein intakes. Proteobacteria abundance also correlated positively (R2 = 0.07, p = 0.0016), and Bacteroidetes negatively (R2 = 0.07, p = 0.0017), with reduced total IBS‐SSS. Specific genera, for example, Eubacterium eligens, Lachnospiraceae UCG‐001, Victivallis, and Lachnospira increased significantly in the intervention group (p < 0.001 for all), whereas Marvinbryantia, DTU089 (Ruminoccocaceae family), Enterorhabdus, and Olsenella decreased, together with changes in amplicon sequence variant (ASV) levels. Modest changes of genus and ASV abundance were observed in the control group. No changes were observed in micro‐RNA expression in either group. Conclusion The SSRD induced a shift in beta diversity along with several bacteria at different levels, associated with changes in nutrient intakes and reduced gastrointestinal symptoms. No corresponding changes were observed in the control group. Neither the nutrient intake nor the microbiota changes affected micro‐RNA expression. The study was registered at ClinicalTrials.gov data base (NCT03306381).
Bacteroidetes use thousands of enzyme combinations to break down glycans
Unlike proteins, glycan chains are not directly encoded by DNA, but by the specificity of the enzymes that assemble them. Theoretical calculations have proposed an astronomical number of possible isomers (> 10 12 hexasaccharides) but the actual diversity of glycan structures in nature is not known. Bacteria of the Bacteroidetes phylum are considered primary degraders of polysaccharides and they are found in all ecosystems investigated. In Bacteroidetes genomes, carbohydrate-degrading enzymes (CAZymes) are arranged in gene clusters termed polysaccharide utilization loci (PULs). The depolymerization of a given complex glycan by Bacteroidetes PULs requires bespoke enzymes; conversely, the enzyme composition in PULs can provide information on the structure of the targeted glycans. Here we group the 13,537 PULs encoded by 964 Bacteroidetes genomes according to their CAZyme composition. We find that collectively Bacteroidetes have elaborated a few thousand enzyme combinations for glycan breakdown, suggesting a global estimate of diversity of glycan structures much smaller than the theoretical one.
Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom
Phytoplankton blooms characterize temperate ocean margin zones in spring. We investigated the bacterioplankton response to a diatom bloom in the North Sea and observed a dynamic succession of populations at genus-level resolution. Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in particular, TonB-dependent transporters) and phosphate acquisition strategies were found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria are specialized for successive decomposition of algal-derived organic matter. Our results suggest that algal substrate availability provided a series of ecological niches in which specialized populations could bloom. This reveals how planktonic species, despite their seemingly homogeneous habitat, can evade extinction by direct competition.
Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community
Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events. Legacies of past ecological disturbances are expected but challenging to demonstrate. Here the authors report a 10-year field experiment in a mountain grassland that shows ecological memory of soil microbial community and functioning in response to recurrent drought.
Ecology of marine Bacteroidetes: a comparative genomics approach
Bacteroidetes are commonly assumed to be specialized in degrading high molecular weight (HMW) compounds and to have a preference for growth attached to particles, surfaces or algal cells. The first sequenced genomes of marine Bacteroidetes seemed to confirm this assumption. Many more genomes have been sequenced recently. Here, a comparative analysis of marine Bacteroidetes genomes revealed a life strategy different from those of other important phyla of marine bacterioplankton such as Cyanobacteria and Proteobacteria. Bacteroidetes have many adaptations to grow attached to particles, have the capacity to degrade polymers, including a large number of peptidases, glycoside hydrolases (GHs), glycosyl transferases, adhesion proteins, as well as the genes for gliding motility. Several of the polymer degradation genes are located in close association with genes for TonB-dependent receptors and transducers, suggesting an integrated regulation of adhesion and degradation of polymers. This confirmed the role of this abundant group of marine bacteria as degraders of particulate matter. Marine Bacteroidetes had a significantly larger number of proteases than GHs, while non-marine Bacteroidetes had equal numbers of both. Proteorhodopsin containing Bacteroidetes shared two characteristics: small genome size and a higher number of genes involved in CO 2 fixation per Mb. The latter may be important in order to survive when floating freely in the illuminated, but nutrient-poor, ocean surface.
Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population
Background Metagenomic studies confirm that obesity is associated with a composition of gut microbiota. There are some controversies, however, about the composition of gut microbial communities in obese individuals in different populations. To examine the association between body mass index and microbiota composition in Ukrainian population, fecal concentrations of Bacteroidetes , Firmicutes , Actinobacteria and Firmicutes/Bacteroidetes (F/B) ratio were analyzed in 61 adult individuals. Results The relative abundance of Actinobacteria was small (5–7%) and comparable in different BMI categories. The content of Firmicutes was gradually increased while the content of Bacteroidetes was decreased with increasing body mass index (BMI). The F/B ratio also raised with increasing BMI. In an unadjusted logistic regression model, F/B ratio was significantly associated with BMI (OR = 1.23, 95% CI 1,09–1,38). This association continued to be significant after adjusting for confounders such as age, sex, tobacco smoking and physical activity (OR = 1.33, 95% CI 1,11–1,60). Conclusions The obtained data indicate that obese persons in Ukraine adult population have a significantly higher level of Firmicutes and lower level of Bacteroidetes compared to normal-weight and lean adults.
In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes
We investigated Bacteroidetes during spring algae blooms in the southern North Sea in 2010–2012 using a time series of 38 deeply sequenced metagenomes. Initial partitioning yielded 6455 bins, from which we extracted 3101 metagenome-assembled genomes (MAGs) including 1286 Bacteroidetes MAGs covering ~120 mostly uncultivated species. We identified 13 dominant, recurrent Bacteroidetes clades carrying a restricted set of conserved polysaccharide utilization loci (PULs) that likely mediate the bulk of bacteroidetal algal polysaccharide degradation. The majority of PULs were predicted to target the diatom storage polysaccharide laminarin, alpha-glucans, alpha-mannose-rich substrates, and sulfated xylans. Metaproteomics at 14 selected points in time revealed expression of SusC-like proteins from PULs targeting all of these substrates. Analyses of abundant key players and their PUL repertoires over time furthermore suggested that fewer and simpler polysaccharides dominated early bloom stages, and that more complex polysaccharides became available as blooms progressed.
Gut microbiome development along the colorectal adenoma–carcinoma sequence
Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe(s), however, have not been surveyed in a comprehensive manner. Here we perform a metagenome-wide association study (MGWAS) on stools from advanced adenoma and carcinoma patients and from healthy subjects, revealing microbial genes, strains and functions enriched in each group. An analysis of potential risk factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment of colorectal adenoma or carcinoma. The gut microbiota is involved in the development of colorectal cancer. Here, the authors analyse the faecal microbiomes of healthy subjects and of patients with colorectal cancer or benign adenoma, revealing microbial genes, strains and functions enriched in each group.