Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,506 result(s) for "Bismuth - analysis"
Sort by:
An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles
Nanomaterials have become increasingly important in the development of new molecular probes for in vivo imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , both experimentally and clinically. Nanoparticulate imaging probes have included semiconductor quantum dots 9 , 10 , 11 , 12 , magnetic 13 and magnetofluorescent nanoparticles 14 , 15 , gold nanoparticles and nanoshells 16 , 17 , 18 , 19 , among others. However, the use of nanomaterials for one of the most common imaging techniques, computed tomography (CT), has remained unexplored. Current CT contrast agents are based on small iodinated molecules. They are effective in absorbing X-rays, but non-specific distribution and rapid pharmacokinetics have rather limited their microvascular and targeting performance. Here we propose the use of a polymer-coated Bi 2 S 3 nanoparticle preparation as an injectable CT imaging agent. This preparation demonstrates excellent stability at high concentrations (0.25 M Bi 3+ ), high X-ray absorption (fivefold better than iodine), very long circulation times (>2 h) in vivo and an efficacy/safety profile comparable to or better than iodinated imaging agents. We show the utility of these polymer-coated Bi 2 S 3 nanoparticles for enhanced in vivo imaging of the vasculature, the liver and lymph nodes in mice. These nanoparticles and their bioconjugates are expected to become an important adjunct to in vivo imaging of molecular targets and pathological conditions.
Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils
Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged for long periods, and bioaccumulate. The detection and especially the quantification of metals require a systematic process. Regular monitoring is necessary because of seasonal variations in metal levels. Consequently, there is a significant need for rapid and low-cost metal determination methods. In this study, we compare and analytically validate absorption spectrometry with a sensitive voltammetric method, which uses a bismuth film-plated electrode surface and applies stripping voltammetry. Atomic absorption spectroscopy (AAS) represents a well-established analytical technique, while the applicability of anodic stripping voltammetry (ASV) in complicated sample matrices such as soil samples is currently unknown. This sample-handling challenge is investigated in the present study. The results show that the AAS and ASV methods were satisfactorily correlated and showed that the metal concentration in soils was lower than the limit values but with an increasing trend. Therefore, continuous monitoring of metal levels in the urban complex of a city is necessary and a matter of great importance. The limits of detection of cadmium (Cd) were lower when using the stripping voltammetry (SWASV) graphite furnace technique compared with those obtained with AAS when using the graphite furnace. However, when using flame atomic absorption spectroscopy (flame-AAS), the measurements tended to overestimate the concentration of Cd compared with the values found using SWASV. This highlights the differences in sensitivity and accuracy between these analytical methods for detecting Cd. The SWASV method has the advantage of being cheaper and faster, enabling the simultaneous determination of heavy elements across the range of concentrations that these elements can occur in Mediterranean soils. Additionally, a dsDNA biosensor is suggested for the discrimination of Cu(I) along with Cu(II) based on the oxidation peak of guanine, and adenine residues can be applied in the redox speciation analysis of copper in soil, which represents an issue of great importance.
Biomonitoring of Potentially Toxic Elements in Dyed Hairs and Its Correlation with Variables of Interest
Hair is good bioindicator of exposure, due to its ability to store and retain trace elements for long periods of time. But it can be especially useful when hair dyes are used since they may contain potentially toxic salts in their composition. In this context, analytical methods for the determination of bismuth, cadmium, lead, and silver in scalp human hair by electrothermal atomic absorption spectrometry were successfully validated. A total of 60 samples obtained from women between 18 and 60 years were analyzed: 34 dyed hairs and 26 untreated hairs (control). Average results expressed in dry weight (dyed/control) for each element were 2.34/0.49 μg g−1 (silver), 0.142/0.139 μg g−1 (bismuth), 0.055/0.054 μg g−1 (cadmium), and 2.09/0.99 μg g−1 (lead), respectively. These results agreed with those previously reported for non-exposed populations. A statistically significant higher Ag concentration in dyed hairs was observed, suggesting the bioaccumulation of this element. The associations between metal concentration and variables of interest (age, education, smoking habit, dye brand, use of dietary supplements) were investigated. A strong Pearson correlation was found for the pair Ag/Pb (r = 0.494, p < 0.05). Also, strong associations between lead levels and all the selected variables were observed (p < 0.05), while strong associations between silver levels with age and dye brand and association between cadmium levels and smoking habit were found. Furthermore, several commercial hair dye brands were analyzed to verify compliance with cosmetic regulations. This constitutes the first study of such characteristics performed in Uruguay, with worldwide relevance.
Monitoring and Evaluating the Quality Consistency of Compound Bismuth Aluminate Tablets by a Simple Quantified Ratio Fingerprint Method Combined with Simultaneous Determination of Five Compounds and Correlated with Antioxidant Activities
A combination method of multi-wavelength fingerprinting and multi-component quantification by high performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was developed and validated to monitor and evaluate the quality consistency of herbal medicines (HM) in the classical preparation Compound Bismuth Aluminate tablets (CBAT). The validation results demonstrated that our method met the requirements of fingerprint analysis and quantification analysis with suitable linearity, precision, accuracy, limits of detection (LOD) and limits of quantification (LOQ). In the fingerprint assessments, rather than using conventional qualitative \"Similarity\" as a criterion, the simple quantified ratio fingerprint method (SQRFM) was recommended, which has an important quantified fingerprint advantage over the \"Similarity\" approach. SQRFM qualitatively and quantitatively offers the scientific criteria for traditional Chinese medicines (TCM)/HM quality pyramid and warning gate in terms of three parameters. In order to combine the comprehensive characterization of multi-wavelength fingerprints, an integrated fingerprint assessment strategy based on information entropy was set up involving a super-information characteristic digitized parameter of fingerprints, which reveals the total entropy value and absolute information amount about the fingerprints and, thus, offers an excellent method for fingerprint integration. The correlation results between quantified fingerprints and quantitative determination of 5 marker compounds, including glycyrrhizic acid (GLY), liquiritin (LQ), isoliquiritigenin (ILG), isoliquiritin (ILQ) and isoliquiritin apioside (ILA), indicated that multi-component quantification could be replaced by quantified fingerprints. The Fenton reaction was employed to determine the antioxidant activities of CBAT samples in vitro, and they were correlated with HPLC fingerprint components using the partial least squares regression (PLSR) method. In summary, the method of multi-wavelength fingerprints combined with antioxidant activities has been proved to be a feasible and scientific procedure for monitoring and evaluating the quality consistency of CBAT.
Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods
Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66–6.9, As 4.5–242, Te 1.35–2.94, Bi 2.18–4.79, and Se 5.4–109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.
In situ deposition of bismuth on pre-anodized screen-printed electrode for sensitive determination of Cd 2+ in water and rice with a portable device
Electrochemical detection is favorable for the rapid and sensitive determination of heavy metal cadmium. However, the detection sensitivity needs to be further improved, and a portable, low-cost device is needed for on-site detection. Herein, an in-situ bismuth modified pre-anodized screen-printed carbon electrode (SPCE) was developed for Cd determination by square wave anodic stripping voltammetry (SWASV). The in-situ bismuth modification enhances the enrichment of Cd , and together with pre-anodization improve the electron transfer rate of electrode, thus enhancing the detection sensitivity. The electrode modification method combines pre-anodization and in-situ bismuth deposition, which is very easy and effective. Furthermore, a self-made PSoC Stat potentiostat coupled with a stirring device was fabricated for portable and low-cost electrochemical detection. After comprehensive optimization, the developed method can reach a testing time of 3 min, a detection limit of 3.55 μg/L, a linear range of 5-100 μg/L, and a recovery rate of 91.7-107.1% in water and rice samples for Cd determination. Therefore, our method holds great promise for the rapid, sensitive and on-site determination of Cd in food samples.
Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers
Slurry sampling graphite furnace atomic absorption spectrometry technique was applied for the determination of Bi in environmental samples. The study focused on the effect of Zr, Ti, Nb and W carbides, as permanent modifiers, on the Bi signal. Because of its highest thermal and chemical stability and ability to substantially increase Bi signal, NbC was chosen as the most effective modifier. The temperature programme applied for Bi determination was optimized based on the pyrolysis and atomization curves obtained for slurries prepared from certified reference materials (CRMs) of the soil and sediments. To overcome interferences caused by sulfur compounds, Ba(NO₃)₂was used as a chemical modifier. Calibration was performed using the aqueous standard solutions. The analysis of the CRMs confirmed the reliability of the proposed analytical method. The characteristic mass for Bi was determined to be 16 pg with the detection limit of 50 ng/g for the optimized procedure at the 5 % (w/v) slurry concentration.
Simultaneous quantification of Bi(III) and U(VI) in environmental water samples with a complicated matrix containing organic compounds
Trace amounts of bismuth(III) and uranium(VI) can be simultaneously determined in a single scan by adsorptive cathodic stripping voltammetry in the presence of cupferron as a complexing agent. Optimal conditions were found to be: 0.1 mol L −1 acetate buffer (pH 5.3), 5 × 10 −5  mol L −1 cupferron, accumulation potential of −0.25 V, and accumulation time of 30 s. The linear range of Bi(III) and U(VI) was observed over the concentration range from 2 × 10 −9 to 2 × 10 −7  mol L −1 and from 1 × 10 −8 to 5 × 10 −7  mol L −1 , respectively. The influence of the main components of real water samples such as foreign ions and organic substances (surface active substances, humic substances) was precisely investigated. The method was applied to the simultaneous measurements of bismuth and uranium in natural water samples.
Determination of total Sb, Se, Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation-atomic-fluorescence spectrometry
A sensitive and simple analytical method has been developed for determination of Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), Te(VI), and Bi(III) in garlic samples by using hydride-generation-atomic-fluorescence spectrometry (HG-AFS). The method is based on a single extraction of the inorganic species by sonication at room temperature with 1 mol L⁻¹ H₂SO₄ and washing of the solid phase with 0.1% (w/v) EDTA, followed by measurement of the corresponding hydrides generated under two different experimental conditions directly and after a pre-reduction step. The limit of detection of the method was 0.7 ng g⁻¹ for Sb(III), 1.0 ng g⁻¹ for Sb(V), 1.3 ng g⁻¹ for Se(IV), 1.0 ng g⁻¹ for Se(VI), 1.1 ng g⁻¹ for Te(IV), 0.5 ng g⁻¹ for Te(VI), and 0.9 ng g⁻¹ for Bi(III), in all cases expressed in terms of sample dry weight.
Distribution of Indium, Thallium and Bismuth in the Environmental Water of Japan
Indium, thallium and bismuth are toxic and it is important to know the distribution of these elements in environmental water. The concentrations of these elements were measured in 50 sampling points in Japan and the reasons of high concentrations in several samples were discussed. The average concentrations (ng/L) of dissolved and particulate indium in river, lake and coastal seawater were 1.4–3.0 and 2.4–9.1, respectively. Those for thallium were 7.2–11.3 and 3.5–36.0. Those for bismuth were 12.7–24.0 and 12.1–52.7.