Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
61,095 result(s) for "Blood groups"
Sort by:
Prevalence of Rh, Duffy, Kell, Kidd & MNSs blood group antigens in the Indian blood donor population
Background & objectives: Little data are available regarding the frequencies of the blood group antigens other than ABO and RhD in the Indian population. Knowledge of the antigen frequencies is important to assess risk of antibody formation and to guide the probability of finding antigen-negative donor blood, which is especially useful when blood is required for a patient who has multiple red cell alloantibodies. This study was carried out to determine the frequencies of the D, C, c, E, e, K, k, Fy a , Fy b , Jk a , Jk b , M, N, S and s antigens in over 3,000 blood donors. Methods: Samples from randomly selected blood donors from Delhi and nearby areas (both voluntary and replacement) were collected for extended antigen typing during the period January 2009 to January 2010. Antigens were typed via automated testing on the Galileo instrument using commercial antisera. Results: A total of 3073 blood samples from donors were phenotyped. The prevalence of these antigens was found to be as follows in %: D: 93.6, C: 87, c: 58, E: 20, e: 98, K: 3.5, k: 99.97, Fy a : 87.4, Fy b : 57.6, Jk a : 81.5, Jk b : 67.4, M: 88.7, N: 65.4, S: 54.8 and s: 88.7. Interpretation & conclusions: This study found the prevalence of the typed antigens among Indian blood donors to be statistically different to those in the Caucasian, Black and Chinese populations, but more similar to Caucasians than to the other racial groups.
Genomewide Association Study of Severe Covid-19 with Respiratory Failure
During the peak of hospitalizations of patients with severe Covid-19 in Italy and Spain in March, a group of researchers in these and other countries obtained and analyzed samples, resulting in the identification of two chromosomal loci associated with the disorder.
Associations between blood type and COVID-19 infection, intubation, and death
The rapid global spread of the novel coronavirus SARS-CoV-2 has strained healthcare and testing resources, making the identification and prioritization of individuals most at-risk a critical challenge. Recent evidence suggests blood type may affect risk of severe COVID-19. Here, we use observational healthcare data on 14,112 individuals tested for SARS-CoV-2 with known blood type in the New York Presbyterian (NYP) hospital system to assess the association between ABO and Rh blood types and infection, intubation, and death. We find slightly increased infection prevalence among non-O types. Risk of intubation was decreased among A and increased among AB and B types, compared with type O, while risk of death was increased for type AB and decreased for types A and B. We estimate Rh-negative blood type to have a protective effect for all three outcomes. Our results add to the growing body of evidence suggesting blood type may play a role in COVID-19. Recent evidence has suggested that blood type may be associated with severe COVID-19. Here, the authors use data from ~14,000 individuals tested for SARS-CoV-2 at a New York City hospital, and find that certain ABO and Rh blood types are associated with infection, intubation, and death.
Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome
The intestinal microbiome is implicated as an important modulating factor in multiple inflammatory 1 , 2 , neurologic 3 and neoplastic diseases 4 . Recent genome-wide association studies yielded inconsistent, underpowered and rarely replicated results such that the role of human host genetics as a contributing factor to microbiome assembly and structure remains uncertain 5 – 11 . Nevertheless, twin studies clearly suggest host genetics as a driver of microbiome composition 11 . In a genome-wide association analysis of 8,956 German individuals, we identified 38 genetic loci to be associated with single bacteria and overall microbiome composition. Further analyses confirm the identified associations of ABO histo-blood groups and FUT2 secretor status with Bacteroides and Faecalibacterium spp. Mendelian randomization analysis suggests causative and protective effects of gut microbes, with clade-specific effects on inflammatory bowel disease. This holistic investigative approach of the host, its genetics and its associated microbial communities as a ‘metaorganism’ broaden our understanding of disease etiology, and emphasize the potential for implementing microbiota in disease treatment and management. Genome-wide association analysis of 8,956 German individuals identifies 38 genetic loci associated with single bacteria and overall microbiome composition.
Secretor and Salivary ABO Blood Group Antigen Status Predict Rotavirus Vaccine Take in Infants
Histo-blood group antigens (HBGAs) expressed on enterocytes are proposed receptors for rotaviruses and can be measured in saliva. Among 181 Pakistani infants in a G1P[8] rotavirus vaccine trial who were seronegative at baseline, anti–rotavirus immunoglobulin A seroconversion rates after 3 vaccine doses differed significantly by salivary HBGA phenotype, with the lowest rate (19%) among infants who were nonsecretors (ie, who did not express the carbohydrate synthesized by FUT2), an intermediate rate (30%) among secretors with non–blood group O, and the highest rate (51%) among secretors with O blood group. Differences in HBGA expression may be responsible for some of the discrepancy in the level of protection detected for the current rotavirus vaccines in low-income versus high-income settings.
Human ABO Blood Groups and Their Associations with Different Diseases
Introduction. Human ABO blood type antigens exhibit alternative phenotypes and genetically derived glycoconjugate structures that are located on the red cell surface which play an active role in the cells’ physiology and pathology. Associations between the blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. However, due to lack of antigens of some blood groups, there have been some contentious issues with the association between the ABO blood group and vulnerability to certain infectious and noninfectious diseases. Objective. To review different literatures that show the association between ABO blood groups and different diseases. Method. Original, adequate, and recent articles on the same field were researched, and the researcher conducted a comprehensive review on this topic. Thus, taking out critical discussions, not only a descriptive summary of the topic but also contradictory ideas were fully retrieved and presented in a clear impression. In addition, some relevant scientific papers published in previous years were included. The article search was performed by matching the terms blood types/groups with a group of terms related to different diseases. The articles were screened and selected based on the title and abstract presented. Results. The susceptibility to various diseases, such as cancer, cardiovascular diseases, infections and hematologic disorders, cognitive disorders, circulatory diseases, metabolic diseases, and malaria, has been linked with ABO blood groups. Moreover, blood group AB individuals were found to be susceptible to an increased risk of cognitive impairment which was independent of geographic region, age, race, and gender. Disorders such as hypertension, obesity, dyslipidemia, cardiovascular disease (CVD), and diabetes were also more prevalent in individuals with cognitive impairment. Early etiological studies indicated that blood type O has a connection with increased incidence of cholera, plague, tuberculosis infections, and mumps, whereas blood type A is linked with increased incidence of smallpox and Pseudomonas aeruginosa infection; blood type B is also associated with increased incidence of gonorrhea, tuberculosis, and Streptococcus pneumoniae, E. coli, and salmonella infections; and blood type AB is associated with increased incidence of smallpox and E. coli and salmonella infections. Diabetes mellitus, hypercholesterolemia, arterial hypertension, and family history for ischemic heart disease are the most common risk factors for cardiovascular diseases and can be genetically transmitted to offspring. Higher incidence of cancers in the stomach, ovaries, salivary glands, cervix, uterus, and colon/rectum was common in blood type A people than in O type people. The link between the ABO blood type and thromboembolic diseases and bleeding risk are intervened by the glycosyltransferase activity and plasma levels and biologic activity of vWF (Von Willebrand factor), a carrier protein for coagulation factor VIII which is low in O type. Conclusion. Several studies related to the ABO phenotype show that genetically determined human ABO blood groups were correspondingly linked with an increased risk of various infectious and noninfectious diseases. However, further investigations are needed particularly on the molecular level of ABO blood groups and their association with various diseases.
Genome-wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density
Abstract Context Estradiol is the primary female sex hormone and plays an important role for skeletal health in both sexes. Several enzymes are involved in estradiol metabolism, but few genome-wide association studies (GWAS) have been performed to characterize the genetic contribution to variation in estrogen levels. Objective Identify genetic loci affecting estradiol levels and estimate causal effect of estradiol on bone mineral density (BMD). Design We performed GWAS for estradiol in males (n = 147 690) and females (n = 163 985) from UK Biobank. Estradiol was analyzed as a binary phenotype above/below detection limit (175 pmol/L). We further estimated the causal effect of estradiol on BMD using Mendelian randomization. Results We identified 14 independent loci associated (P < 5 × 10−8) with estradiol levels in males, of which 1 (CYP3A7) was genome-wide and 7 nominally (P < 0.05) significant in females. In addition, 1 female-specific locus was identified. Most loci contain functionally relevant genes that have not been discussed in relation to estradiol levels in previous GWAS (eg, SRD5A2, which encodes a steroid 5-alpha reductase that is involved in processing androgens, and UGT3A1 and UGT2B7, which encode enzymes likely to be involved in estradiol elimination). The allele that tags the O blood group at the ABO locus was associated with higher estradiol levels. We identified a causal effect of high estradiol levels on increased BMD in both males (P = 1.58 × 10−11) and females (P = 7.48 × 10−6). Conclusion Our findings further support the importance of the body’s own estrogen to maintain skeletal health in males and in females.
Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso
Norovirus (NoV) constitutes the second most common viral pathogen causing pediatric diarrhea after rotavirus. In Africa, diarrhea is a major health problem in children, and yet few studies have been performed regarding NoV. The association of histo-blood group antigens (HBGA) and susceptibility to NoV infection is well established in Caucasian populations with non-secretors being resistant to many common NoV strains. No study regarding HBGA and NoV susceptibility has yet been performed in Africa. We collected 309 stool and 208 saliva samples from diarrheal children in Ouagadougou, Burkina Faso; May 2009 to March 2010. NoV was detected using real-time PCR, and genotyped by sequencing. Saliva samples were ABO, Lewis and secretor phenotyped using in house ELISA assays. NoV was detected in 12% (n = 37) of the samples. The genotype diversity was unusually large; overall the 37 positive samples belonged to 14 genotypes. Only children <2 years of age were NoV positive and the GII.4 NoVs were more frequent in the late dry season (Jan-May). NoV infections were observed less in children with the secretor-negative phenotype or blood group A (OR 0.18; p = 0.012 and OR 0.31; p = 0.054; respectively), with two non-secretors infected with genotypes GII.7 and GII.4 respectively. Lewis-negative (Le(a-b-)) children, representing 32% of the study population, were susceptible to GII, but were not infected with any NoV GI. GII.4 strains preferentially infected children with blood group B whereas secretor-positive children with blood group O were infected with the largest variety of genotypes. This is the first study identifying host genetic factors associated with susceptibility to NoV in an African population, and suggests that while the non-secretor phenotype provides protection; the Lewis b antigen is not necessary for GII infection.
Association Between ABO Blood Group System and COVID-19 Susceptibility in Wuhan
The ABO blood group system has been associated with multiple infectious diseases, including hepatitis B, dengue haemorrhagic fever and so on. Coronavirus disease 2019 (COVID-19) is a new respiratory infectious disease and the relationship between COVID-19 and ABO blood group system needs to be explored urgently. A hospital-based case-control study was conducted at Zhongnan Hospital of Wuhan University from 1 January 2020 to 5 March 2020. A total of 105 COVID-19 cases and 103 controls were included. The blood group frequency was tested with the chi-square statistic, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated between cases and controls. In addition, according to gender, the studied population was divided into two subgroups, and we assessed the association between cases and controls by gender. Finally, considering lymphopenia as a feature of COVID-19, the relationship between the ABO blood group and the lymphocyte count was determined in case samples. The frequencies of blood types A, B, AB, and O were 42.8, 26.7, 8.57, and 21.9%, respectively, in the case group. Association analysis between the ABO blood group and COVID-19 indicated that there was a statistically significant difference for blood type A ( = 0.04, OR = 1.33, 95% CI = 1.02-1.73) but not for blood types B, AB or O ( = 0.48, OR = 0.90, 95% CI = 0.66-1.23; = 0.61, OR = 0.88, 95% CI = 0.53-1.46; and = 0.23, OR = 0.82, 95% CI = 0.58-1.15, respectively). An analysis stratified by gender revealed that the association was highly significant between blood type A in the female subgroup ( = 0.02, OR = 1.56, 95% CI = 1.08-2.27) but not in the male subgroup ( = 0.51, OR = 1.14, 95% CI = 0.78-1.67). The average level of lymphocyte count was the lowest with blood type A in patients, however, compared with other blood types, there was still no significant statistical difference. Our findings provide epidemiological evidence that females with blood type A are susceptible to COVID-19. However, these research results need to be validated in future studies.
ABO Blood Types and COVID-19: Spurious, Anecdotal, or Truly Important Relationships? A Reasoned Review of Available Data
Since the emergence of COVID-19, many publications have reported associations with ABO blood types. Despite between-study discrepancies, an overall consensus has emerged whereby blood group O appears associated with a lower risk of COVID-19, while non-O blood types appear detrimental. Two major hypotheses may explain these findings: First, natural anti-A and anti-B antibodies could be partially protective against SARS-CoV-2 virions carrying blood group antigens originating from non-O individuals. Second, O individuals are less prone to thrombosis and vascular dysfunction than non-O individuals and therefore could be at a lesser risk in case of severe lung dysfunction. Here, we review the literature on the topic in light of these hypotheses. We find that between-study variation may be explained by differences in study settings and that both mechanisms are likely at play. Moreover, as frequencies of ABO phenotypes are highly variable between populations or geographical areas, the ABO coefficient of variation, rather than the frequency of each individual phenotype is expected to determine impact of the ABO system on virus transmission. Accordingly, the ABO coefficient of variation correlates with COVID-19 prevalence. Overall, despite modest apparent risk differences between ABO subtypes, the ABO blood group system might play a major role in the COVID-19 pandemic when considered at the population level.