Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
746
result(s) for
"DNA Breaks, Double-Stranded - radiation effects"
Sort by:
Chromatin Compaction Protects Genomic DNA from Radiation Damage
2013
Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.
Journal Article
Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance
2021
Mitochondrial DNA double-strand breaks (mtDSBs) are toxic lesions that compromise the integrity of mitochondrial DNA (mtDNA) and alter mitochondrial function
1
. Communication between mitochondria and the nucleus is essential to maintain cellular homeostasis; however, the nuclear response to mtDSBs remains unknown
2
. Here, using mitochondrial-targeted transcription activator-like effector nucleases (TALENs)
1
,
3
,
4
, we show that mtDSBs activate a type-I interferon response that involves the phosphorylation of STAT1 and activation of interferon-stimulated genes. After the formation of breaks in the mtDNA, herniation
5
mediated by BAX and BAK releases mitochondrial RNA into the cytoplasm and triggers a RIG-I–MAVS-dependent immune response. We further investigated the effect of mtDSBs on interferon signalling after treatment with ionizing radiation and found a reduction in the activation of interferon-stimulated genes when cells that lack mtDNA are exposed to gamma irradiation. We also show that mtDNA breaks synergize with nuclear DNA damage to mount a robust cellular immune response. Taken together, we conclude that cytoplasmic accumulation of mitochondrial RNA is an intrinsic immune surveillance mechanism for cells to cope with mtDSBs, including breaks produced by genotoxic agents.
Breaks in mitochondrial DNA cause leakage of mitochondrial RNA into the cytoplasm, enhancing immune surveillance and synergizing with nuclear DNA damage to mount a robust type-I interferon immune response.
Journal Article
Bisbenzamidine derivative, pentamidine represses DNA damage response through inhibition of histone H2A acetylation
by
Kato, Akihiro
,
Kobayashi, Junya
,
Komatsu, Kenshi
in
Acetylation
,
Acetylation - drug effects
,
Acetylation - radiation effects
2010
Background
MRE11 is an important nuclease which functions in the end-resection step of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). As MRE11-deficient ATLD cells exhibit hyper radio-sensitivity and impaired DSB repair, MRE11 inhibitors could possibly function as potent radio-sensitizers. Therefore, we investigated whether a bisbenzamidine derivative, pentamidine, which can inhibit endoexonuclease activity, might influence DSB-induced damage responses
via
inhibition of MRE11.
Results
We first clarified that pentamidine inhibited MRE11 nuclease activity and also reduced ATM kinase activity in vitro. Pentamidine increased the radio-sensitivity of HeLa cells, suggesting that this compound could possibly influence DNA damage response factors in vivo. Indeed, we found that pentamidine reduced the accumulation of γ-H2AX, NBS1 and phospho-ATM at the sites of DSBs. Furthermore, pentamidine decreased HR activity
in vivo
. Pentamidine was found to inhibit the acetylation of histone H2A which could contribute both to inhibition of IR-induced focus formation and HR repair. These results suggest that pentamidine might exert its effects by inhibiting histone acetyltransferases. We found that pentamidine repressed the activity of Tip60 acetyltransferase which is known to acetylate histone H2A and that knockdown of Tip60 by siRNA reduced HR activity.
Conclusion
These results indicate that inhibition of Tip60 as well as hMRE11 nuclease by pentamidine underlies the radiosensitizing effects of this compound making it an excellent sensitizer for radiotherapy or chemotherapy.
Journal Article
DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer
2020
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia–telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Journal Article
Radiation resistance in head and neck squamous cell carcinoma: dire need for an appropriate sensitizer
by
Mierzwa, Michelle
,
D’Silva Nisha J
,
Hutchinson Marsha-Kay N D
in
Apoptosis
,
Deoxyribonucleic acid
,
DNA damage
2020
Radiation is a significant treatment for patients with head and neck cancer. Despite advances to improve treatment, many tumors acquire radiation resistance resulting in poor survival. Radiation kills cancer cells by inducing DNA double-strand breaks. Therefore, radiation resistance is enhanced by efficient repair of damaged DNA. Head and neck cancers overexpress EGFR and have a high frequency of p53 mutations, both of which enhance DNA repair. This review discusses the clinical criteria for radiation resistance in patients with head and neck cancer and summarizes how cancer cells evade radiation-mediated apoptosis by p53- and epidermal growth factor receptor (EGFR)-mediated DNA repair. In addition, we explore the role of cancer stem cells in promoting radiation resistance, and how the abscopal effect provides rationale for combination strategies with immunotherapy.
Journal Article
Is Non-Homologous End-Joining Really an Inherently Error-Prone Process?
2014
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Journal Article
The Major DNA Repair Pathway after Both Proton and Carbon-Ion Radiation is NHEJ, but the HR Pathway is More Relevant in Carbon Ions
by
Gerelchuluun, Ariungerel
,
Manabe, Eri
,
Asaithamby, Aroumougame
in
Animals
,
Carbon
,
Cell Cycle - radiation effects
2015
The purpose of this study was to identify the roles of non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways in repairing DNA double-strand breaks (DSBs) induced by exposure to high-energy protons and carbon ions (C ions) versus gamma rays in Chinese hamster cells. Two Chinese hamster cell lines, ovary AA8 and lung fibroblast V79, as well as various mutant sublines lacking DNA-PKcs (V3), X-ray repair cross-complementing protein-4 [XRCC4 (XR1), XRCC3 (irs1SF) and XRCC2 (irs1)] were exposed to gamma rays (137Cs), protons (200 MeV; 2.2 keV/μm) and C ions (290 MeV; 50 keV/μm). V3 and XR1 cells lack the NHEJ pathway, whereas irs1 and irs1SF cells lack the HR pathway. After each exposure, survival was measured using a clonogenic survival assay, in situ DSB induction was evaluated by immunocytochemical analysis of histone H2AX phosphorylation at serine 139 (γ-H2AX foci) and chromosome aberrations were examined using solid staining. The findings from this study showed that clonogenic survival clearly depended on the NHEJ and HR pathway statuses, and that the DNA-PKcs–/– cells (V3) were the most sensitive to all radiation types. While protons and γ rays yielded almost the same biological effects, C-ion exposure greatly enhanced the sensitivity of wild-type and HR-deficient cells. However, no significant enhancement of sensitivity in cell killing was seen after C-ion irradiation of NHEJ deficient cells. Decreases in the number of γ-H2AX foci after irradiation occurred more slowly in the NHEJ deficient cells. In particular, V3 cells had the highest number of residual γ-H2AX foci at 24 h after C-ion irradiation. Chromosomal aberrations were significantly higher in both the NHEJ- and HR-deficient cell lines than in wild-type cell lines in response to all radiation types. Protons and gamma rays induced the same aberration levels in each cell line, whereas C ions introduced higher but not significantly different aberration levels. Our results suggest that the NHEJ pathway plays an important role in repairing DSBs induced by both clinical proton and C-ion beams. Furthermore, in C ions the HR pathway appears to be involved in the repair of DSBs to a greater extent compared to gamma rays and protons.
Journal Article
Inheritance of paternal DNA damage by histone-mediated repair restriction
2023
How paternal exposure to ionizing radiation affects genetic inheritance and disease risk in the offspring has been a long-standing question in radiation biology. In humans, nearly 80% of transmitted mutations arise in the paternal germline
1
, but the transgenerational effects of ionizing radiation exposure has remained controversial and the mechanisms are unknown. Here we show that in sex-separated
Caenorhabditis elegans
strains, paternal, but not maternal, exposure to ionizing radiation leads to transgenerational embryonic lethality. The offspring of irradiated males displayed various genome instability phenotypes, including DNA fragmentation, chromosomal rearrangement and aneuploidy. Paternal DNA double strand breaks were repaired by maternally provided error-prone polymerase theta-mediated end joining. Mechanistically, we show that depletion of an orthologue of human histone H1.0, HIS-24, or the heterochromatin protein HPL-1, could significantly reverse the transgenerational embryonic lethality. Removal of HIS-24 or HPL-1 reduced histone 3 lysine 9 dimethylation and enabled error-free homologous recombination repair in the germline of the F
1
generation from ionizing radiation-treated P
0
males, consequently improving the viability of the F
2
generation. This work establishes the mechanistic underpinnings of the heritable consequences of paternal radiation exposure on the health of offspring, which may lead to congenital disorders and cancer in humans.
In
Caenorhabditis elegans
, paternal exposure to ionizing radiation results in HIS-24 and HPL-1-dependent genome instability phenotypes, causing embryonic lethality in the offspring.
Journal Article
USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma
2022
Radiotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC), and approximately 20% of patients experience treatment failure due to tumour radioresistance. However, the exact regulatory mechanism remains poorly understood. Here, we show that the deubiquitinase
USP44
is hypermethylated in NPC, which results in its downregulation. USP44 enhances the sensitivity of NPC cells to radiotherapy in vitro and in vivo. USP44 recruits and stabilizes the E3 ubiquitin ligase TRIM25 by removing its K48-linked polyubiquitin chains at Lys439, which further facilitates the degradation of Ku80 and inhibits its recruitment to DNA double-strand breaks (DSBs), thus enhancing DNA damage and inhibiting DNA repair via non-homologous end joining (NHEJ). Knockout of TRIM25 reverses the radiotherapy sensitization effect of USP44. Clinically, low expression of USP44 indicates a poor prognosis and facilitates tumour relapse in NPC patients. This study suggests the USP44-TRIM25-Ku80 axis provides potential therapeutic targets for NPC patients.
Radiotherapy is the mainstay treatment for nasopharyngeal carcinoma (NPC). Here the authors show that the deubiquitinase, USP44, increases radiosensitivity of NPC cells by promoting the degradation of Ku80, and thus enhancing the levels of DNA damage.
Journal Article
Induction and Repair of Clustered DNA Lesions: What Do We Know So Far?
by
Georgakilas, Alexandros G.
,
O'Neill, Peter
,
Stewart, Robert D.
in
Animals
,
Deoxyribonucleic acid
,
DNA Breaks, Double-Stranded - radiation effects
2013
The accumulated evidence in the literature indicates that a cluster of two or more lesions within one or two helical turns of the DNA is more challenging to repair than individual, widely dispersed lesions. The biological importance of clustered DNA lesions, especially complex double-strand breaks (DSB) and some types of non-DSB clusters (e.g., opposed bases that are oxidized), are now well known within the radiation research community. Still, many details of the induction and biological processing of complex clusters remain to be elucidated, especially in human cells. In this mini-review, we discuss recent advances in our understanding of the pathway(s) used by the mammalian cells to process and efficiently repair complex clusters other than the DSB. The effects of radiation quality and hypoxia on cluster induction and complexity are also briefly reviewed and discussed. Additional research is needed to better understand and quantify the multi-scale physiochemical and biological processes ultimately responsible for radiation-induced mutagenesis and genomic instability. New information and models to better quantify intermediate events (outcomes) related to the biological processing of non-DSB clusters are also important for ongoing efforts to assess the human health risks of terrestrial and space radiation environments and to guide the radiation therapy treatment planning process, especially for protons and carbon ions.
Journal Article