Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,423
result(s) for
"Extracellular Matrix - immunology"
Sort by:
The extracellular matrix in myocardial injury, repair, and remodeling
2017
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.
Journal Article
EGFL7 reduces CNS inflammation in mouse
2018
Extracellular matrix (ECM) proteins secreted by blood-brain barrier (BBB) endothelial cells (ECs) are implicated in cell trafficking. We discovered that the expression of ECM epidermal growth factor-like protein 7 (EGFL7) is increased in the CNS vasculature of patients with multiple sclerosis (MS), and in mice with experimental autoimmune encephalomyelitis (EAE). Perivascular CD4 T lymphocytes colocalize with ECM-bound EGFL7 in MS lesions. Human and mouse activated T cells upregulate EGFL7 ligand αvβ3 integrin and can adhere to EGFL7 through integrin αvβ3. EGFL7-knockout (KO) mice show earlier onset of EAE and increased brain and spinal cord parenchymal infiltration of T lymphocytes. Importantly, EC-restricted EGFL7-KO is associated with a similar EAE worsening. Finally, treatment with recombinant EGFL7 improves EAE, reduces MCAM expression, and tightens the BBB in mouse. Our data demonstrate that EGFL7 can limit CNS immune infiltration and may represent a novel therapeutic avenue in MS.
Endothelial cells release extracellular matrix components that regulate inflammation. Here the authors demonstrate that the extracellular matrix component epidermal growth factor-like protein 7 regulates inflammation in experimental autoimmune encephalomyelitis in the mouse.
Journal Article
Sera of patients with spontaneous tumour regression and elevated anti‐CA I autoantibodies change the gene expression of ECM proteins
2017
Spontaneous tumour regression after high‐dose therapy and autologous stem cell transplantation is associated with the aplastic anaemia‐like syndrome and the presence of polyclonal autoantibodies against carbonic anhydrase I (CA I). When tumour cells were grown in vitro in the presence of patients’ sera positive for anti‐CA I autoantibodies, their morphological pattern was altered. These changes were accompanied by modifications in the gene expression profile. We observed downregulation of genes of the basal lamina assembly (collagen type IV alpha 4, the laminin subunit gamma 2), the extracellular matrix (collagen type I alpha 1), the cytoskeleton (keratin 14 type I), the collagen triple helix repeat containing 1 and the proto‐oncogene WNT7B. On the other hand, the expression of the CA 1 gene was increased in the tumour cells. It was also noticed that the presence of anti‐CA I autoantibodies did not impair tumour cell proliferation and cell viability in vitro. These findings were observed only in the presence of patients’ sera positive for anti‐CA I autoantibodies.
Journal Article
Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion
2020
Tumor extracellular matrix has been associated with drug resistance and immune suppression. Here, proteomic and RNA profiling reveal increased collagen levels in lung tumors resistant to PD-1/PD-L1 blockade. Additionally, elevated collagen correlates with decreased total CD8
+
T cells and increased exhausted CD8
+
T cell subpopulations in murine and human lung tumors. Collagen-induced T cell exhaustion occurs through the receptor LAIR1, which is upregulated following CD18 interaction with collagen, and induces T cell exhaustion through SHP-1. Reduction in tumor collagen deposition through LOXL2 suppression increases T cell infiltration, diminishes exhausted T cells, and abrogates resistance to anti-PD-L1. Abrogating LAIR1 immunosuppression through LAIR2 overexpression or SHP-1 inhibition sensitizes resistant lung tumors to anti-PD-1. Clinically, increased collagen, LAIR1, and TIM-3 expression in melanoma patients treated with PD-1 blockade predict poorer survival and response. Our study identifies collagen and LAIR1 as potential markers for immunotherapy resistance and validates multiple promising therapeutic combinations.
Tumor extracellular matrix has been associated with cancer progression, therapy resistance and immune suppression. Here, the authors show that collagen generates resistance to PD-1/PD-L1 immunotherapy by upregulating LAIR1 expression and downstream signaling, leading to increased CD8+ T cell exhaustion.
Journal Article
The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens
2004
Microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. However, ECM components can also serve as an integral part of the innate immunity. Mice lacking expression of mindin (spondin 2), a highly conserved ECM protein, have an impaired ability to clear bacterial infection, and mindin-deficient macrophages show defective responses to a broad spectrum of microbial stimuli. Moreover, mindin binds directly to bacteria and their components and functions as an opsonin for macrophage phagocytosis of bacteria. Thus, mindin is essential in the initiation of the innate immune response and represents a unique pattern-recognition molecule in the ECM for microbial pathogens.
Journal Article
Functional significance of the platelet immune receptors GPVI and CLEC-2
by
Nieswandt, Bernhard
,
Rayes, Julie
,
Watson, Steve P.
in
Amino Acid Motifs
,
Animals
,
Antiplatelet therapy
2019
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Journal Article
A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development
2019
Degradation of extracellular matrix (ECM) underlies loss of cartilage tissue in osteoarthritis, a common disease for which no effective disease-modifying therapy currently exists. Here we describe BNTA, a small molecule with ECM modulatory properties. BNTA promotes generation of ECM components in cultured chondrocytes isolated from individuals with osteoarthritis. In human osteoarthritic cartilage explants, BNTA treatment stimulates expression of ECM components while suppressing inflammatory mediators. Intra-articular injection of BNTA delays the disease progression in a trauma-induced rat model of osteoarthritis. Furthermore, we identify superoxide dismutase 3 (SOD3) as a mediator of BNTA activity. BNTA induces SOD3 expression and superoxide anion elimination in osteoarthritic chondrocyte culture, and ectopic SOD3 expression recapitulates the effect of BNTA on ECM biosynthesis. These observations identify SOD3 as a relevant drug target, and BNTA as a potential therapeutic agent in osteoarthritis.
Loss of cartilage tissue is a hallmark of osteoarthritis. Here the authors show that BNTA, a small molecule identified in a chemical screen, promotes ECM generation in human osteoarthritic chondrocytes and cartilage explants, and suppresses pathology in a rat model of osteoarthritis.
Journal Article
CAF-induced physical constraints controlling T cell state and localization in solid tumours
by
Carradori, Giulia
,
Scherz-Shouval, Ruth
,
Arpinati, Ludovica
in
631/67/327
,
631/67/580
,
Animals
2024
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM — the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
In this Review, Arpinati et al. summarize how the extracellular matrix, produced primarily by cancer-associated fibroblasts, impacts tumour progression, metastasis and therapy response through modulation of T cell-mediated antitumour immunity and propose routes to target these mechanisms therapeutically.
Journal Article
Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion
2021
Immune exclusion predicts poor patient outcomes in multiple malignancies, including triple-negative breast cancer (TNBC)
1
. The extracellular matrix (ECM) contributes to immune exclusion
2
. However, strategies to reduce ECM abundance are largely ineffective or generate undesired outcomes
3
,
4
. Here we show that discoidin domain receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity
5
, instigates immune exclusion by promoting collagen fibre alignment. Ablation of
Ddr1
in tumours promotes the intratumoral penetration of T cells and obliterates tumour growth in mouse models of TNBC. Supporting this finding, in human TNBC the expression of DDR1 negatively correlates with the intratumoral abundance of anti-tumour T cells. The DDR1 extracellular domain (DDR1-ECD), but not its intracellular kinase domain, is required for immune exclusion. Membrane-untethered DDR1-ECD is sufficient to rescue the growth of
Ddr1
-knockout tumours in immunocompetent hosts. Mechanistically, the binding of DDR1-ECD to collagen enforces aligned collagen fibres and obstructs immune infiltration. ECD-neutralizing antibodies disrupt collagen fibre alignment, mitigate immune exclusion and inhibit tumour growth in immunocompetent hosts. Together, our findings identify a mechanism for immune exclusion and suggest an immunotherapeutic target for increasing immune accessibility through reconfiguration of the tumour ECM.
In mouse models of triple-negative breast cancer, the extracellular domain of the collagen receptor DDR1 has a role in tumour defence against the immune system, by aligning collagen fibres to obstruct immune infiltration.
Journal Article
Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix
by
Stashko, Connor
,
Pishvaian, Michael J.
,
Hollingsworth, Michael
in
Adenocarcinoma
,
Aged
,
Analysis
2020
Desmoplasia describes the deposition of extensive extracellular matrix and defines primary pancreatic ductal adenocarcinoma (PDA). The acellular component of this stroma has been implicated in PDA pathogenesis and is being targeted therapeutically in clinical trials. By analyzing the stromal content of PDA samples from numerous annotated PDA data sets and correlating stromal content with both anatomic site and clinical outcome, we found PDA metastases in the liver, the primary cause of mortality to have less stroma, have higher tumor cellularity than primary tumors. Experimentally manipulating stromal matrix with an anti-lysyl oxidase like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse models significantly decreased matrix content, led to lower tissue stiffness, lower contrast retention on computed tomography, and accelerated tumor growth, resulting in diminished overall survival. These studies suggest an important protective role of stroma in PDA and urge caution in clinically deploying stromal depletion strategies.
Journal Article