Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
133 result(s) for "GABA Modulators - therapeutic use"
Sort by:
Trial of SAGE-217 in Patients with Major Depressive Disorder
Patients with major depression were treated with an oral γ-aminobutyric acid type A–receptor modulator for 14 days. At day 15, patients who received the drug had a greater reduction in depressive symptoms than patients who received placebo. Headache was the most common adverse event.
Pharmacotherapy of Postpartum Depression: Current Approaches and Novel Drug Development
Postpartum depression is one of the most common complications of childbirth. Untreated postpartum depression can have substantial adverse effects on the well-being of the mother and child, negatively impacting child cognitive, behavioral, and emotional development with lasting consequences. There are a number of therapeutic interventions for postpartum depression including pharmacotherapy, psychotherapy, neuromodulation, and hormonal therapy among others, most of which have been adapted from the treatment of major depressive disorder outside of the peripartum period. Current evidence of antidepressant treatment for postpartum depression is limited by the small number of randomized clinical trials, underpowered samples, and the lack of long-term follow-up. The peripartum period is characterized by rapid and significant physiological change in plasma levels of endocrine hormones, peptides, and neuroactive steroids. Evidence supporting the role of neuroactive steroids and γ-aminobutyric acid (GABA) in the pathophysiology of postpartum depression led to the investigation of synthetic neuroactive steroids and their analogs as potential treatment for postpartum depression. Brexanolone, a soluble proprietary intravenous preparation of synthetic allopregnanolone, has been developed. A recent series of open-label and placebo-controlled randomized clinical trials of brexanolone in postpartum depression demonstrated a rapid reduction in depressive symptoms, and has led to the submission for regulatory approval to the US Food and Drug Administration (decision due in March 2019). SAGE-217, an allopregnanolone analog, with oral bioavailability, was recently tested in a randomized, double-blind, placebo-controlled phase III study in severe postpartum depression, with reportedly positive results. Finally, a 3β-methylated synthetic analog of allopregnanolone, ganaxolone, is being tested in both intravenous and oral forms, in randomized, double-blind, placebo-controlled phase II studies in severe postpartum depression.
Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission
Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na V 1.1 causes Dravet’s syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet’s syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a +/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na V 1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA A receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet’s syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na V 1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet’s syndrome. Haploinsufficiency of the gene SCN1A ( SCN1A +/− ) causes Dravet’s syndrome in humans, a form of epilepsy with autistic features; this paper shows that Scn1a +/− mice have the same symptoms, and that social behaviours can be improved by pharmacological treatment with clonazepam. Sodium-channel mutant linked to autism Haploinsufficiency of the gene SCN1A, which encodes a voltage-gated sodium channel, causes Dravet’s syndrome, a form of childhood epilepsy that sometimes includes autistic features. This paper shows that mice with Scn1a haploinsufficiency also display autism-related behaviours, including hyperactivity and impaired social interaction. GABAergic neurotransmission is reduced in these mice, and social behaviours can be improved by pharmacological treatment with clonazepam.
A randomised controlled trial of bumetanide in the treatment of autism in children
Gamma aminobutyric acid (GABA)-mediated synapses and the oscillations they orchestrate are altered in autism. GABA-acting benzodiazepines exert in some patients with autism paradoxical effects, raising the possibility that like in epilepsies, GABA excites neurons because of elevated intracellular concentrations of chloride. Following a successful pilot study, 1 we have now performed a double-blind clinical trial using the diuretic, chloride-importer antagonist bumetanide that reduces intracellular chloride reinforcing GABAergic inhibition. Sixty children with autism or Asperger syndrome (3–11 years old) received for 3 months placebo or bumetanide (1 mg daily), followed by 1-month wash out. Determination of the severity of autism was made with video films at day 0 (D0) and D90 by blind, independent evaluators. Bumetanide reduced significantly the Childhood Autism Rating Scale (CARS) (D90−D0; P <0.004 treated vs placebo), Clinical Global Impressions ( P <0.017 treated vs placebo) and Autism Diagnostic Observation Schedule values when the most severe cases (CARS values above the mean±s.d.; n =9) were removed (Wilcoxon test: P -value=0.031; Student’s t -test: P -value=0.017). Side effects were restricted to an occasional mild hypokalaemia (3.0–3.5 mM l −1 K + ) that was treated with supplemental potassium. In a companion study, chronic bumetanide treatment significantly improved accuracy in facial emotional labelling, and increased brain activation in areas involved in social and emotional perception (Hadjikhani et al. , submitted). Therefore, bumetanide is a promising novel therapeutic agent to treat autism. Larger trials are warranted to better determine the population best suited for this treatment.
Novel Therapeutics for Neonatal Seizures
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies
Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic system and be a potential treatment for people with ASD. The present systematic review aimed at evaluating the state-of-the-art of clinical trials of GABA modulators in autism. To date there is insufficient evidence to suggest the use of these drugs in autistic subjects, even if data are promising. Of note, short-term use of all the reviewed medications appears to be safe. Future well designed trials are needed to elucidate these preliminary findings.
Suppressing effect of CMPPE, a new positive allosteric modulator of the GABA B receptor, on alcohol self-administration and reinstatement of alcohol seeking in rats
Positive allosteric modulators (PAMs) of the GABA receptor constitute a class of pharmacological agents gaining increasing attention in the alcohol research field because of their ability to suppress several alcohol-related behaviors in rodents. CMPPE is a novel GABA PAM, still limitedly characterized in vivo. It was therefore of interest to test its ability to affect operant, oral self-administration of alcohol and cue-induced reinstatement of alcohol seeking in alcohol-preferring rats. To this end, female Sardinian alcohol-preferring (sP) rats were trained to lever-respond for alcohol (15% v/v) under the fixed ratio (FR) 5 (FR5) schedule of reinforcement. Once lever-responding had stabilized, rats were exposed to test sessions (under the FR5 [Experiment 1] and progressive ratio [PR; Experiment 2] schedules of reinforcement) preceded by treatment with CMPPE (0, 2.5, 5, and 10 mg/kg; intraperitoneally [i.p.]). In Experiment 3, once lever-responding had stabilized, rats underwent an extinction responding phase and then a single reinstatement session during which lever-responding was resumed by the non-contingent presentation of a complex of alcohol-associated cues; CMPPE (0, 2.5, 5, and 10 mg/kg; i.p.) was administered before the reinstatement session. Selectivity of CMPPE action was assessed by evaluating the effect of CMPPE (0, 2.5, 5, and 10 mg/kg; i.p.) on self-administration of a chocolate solution in male Wistar rats (Experiment 4). In Experiments 1 and 2, treatment with 5 and 10 mg/kg CMPPE reduced lever-responding and breakpoint for alcohol. In Experiment 3, treatment with 5 and 10 mg/kg CMPPE suppressed reinstatement of alcohol seeking. In Experiment 4, no dose of CMPPE affected lever-responding for the chocolate solution. These results extend to CMPPE the ability of all previously tested GABA PAMs to affect alcohol-motivated behaviors in rodents and confirm that these effects are a shared feature of the entire class of GABA PAMs. This conclusion is of relevance in view of the forthcoming transition of GABA PAMs to clinical testing.
The Clinical and Forensic Toxicology of Z-drugs
The Z-drugs zolpidem, zopiclone, and zaleplon were hailed as the innovative hypnotics of the new millennium, an improvement to traditional benzodiazepines in the management of insomnia. Increasing reports of adverse events including bizarre behavior and falls in the elderly have prompted calls for caution and regulation. Z-drugs have significant hypnotic effects by reducing sleep latency and improving sleep quality, though duration of sleep may not be significantly increased. Z-drugs exert their effects through increased γ-aminobutyric acid (GABA) transmission at the same GABA-type A receptor as benzodiazepines. Their pharmacokinetics approach those of the ideal hypnotic with rapid onset within 30 min and short half-life (1–7 h). Zopiclone with the longest duration of action has the greatest residual effect, similar to short-acting benzodiazepines. Neuropsychiatric adverse events have been reported with zolpidem including hallucinations, amnesia, and parasomnia. Poisoning with Z-drugs involves predominantly sedation and coma with supportive management being adequate in the majority. Flumazenil has been reported to reverse sedation from all three Z-drugs. Deaths from Z-drugs are rare and more likely to occur with polydrug overdose. Z-drugs can be detected in blood, urine, oral fluid, and postmortem specimens, predominantly with liquid chromatography–mass spectrometry techniques. Zolpidem and zaleplon exhibit significant postmortem redistribution. Zaleplon with its ultra-short half-life has been detected in few clinical or forensic cases possibly due to assay unavailability, low frequency of use, and short window of detection. Though Z-drugs have improved pharmacokinetic profiles, their adverse effects, neuropsychiatric sequelae, and incidence of poisoning and death may prove to be similar to older hypnotics.
Anti-addictive properties of COR659 – Additional pharmacological evidence and comparison with a series of novel analogues
A recent study found that COR659 (methyl 2-[(4-chlorophenyl)carboxamido]-4-ethyl-5-methylthiophene-3-carboxylate) reduced operant alcohol and chocolate self-administration in rats; COR659 also suppressed cue-induced reinstatement of chocolate seeking in rats. COR659 apparently exerts its effects via a composite mechanism, including positive allosteric modulation of the GABAB receptor and an action at the cannabinoid CB1 receptor. The present study investigated whether the reducing effect of COR659 on alcohol and chocolate self-administration was maintained after repeated treatment and if COR659 affected cue-induced reinstatement of alcohol seeking; additionally, it evaluated the ability of 9 structural analogues of COR659 – designed modifying the substituents on the phenylcarboxamido moiety and replacing the thiophene with the pyridine ring – to affect alcohol and chocolate self-administration. Alcohol self-administration experiments employed Sardinian alcohol-preferring (sP) rats trained to lever-respond for alcohol (15% v/v). Chocolate self-administration experiments employed Wistar rats trained to lever-respond for a chocolate solution (5% w/v Nesquik®). In the reinstatement experiment, previously extinguished lever-responding for alcohol in sP rats was reinstated by the non-contingent presentation of an alcohol-associated complex of cues. All drugs were tested at the doses of 0, 2.5, 5, and 10 mg/kg (i.p.). 10-Day treatment with COR659 produced a dose-related reduction of both alcohol and chocolate self-administration, with limited loss of efficacy on continuing treatment. Acute COR659 suppressed reinstatement of alcohol seeking. Among the 9 tested analogues, only COR657 (methyl 2-(benzoylamino)-4-ethyl-5-methylthiophene-3-carboxylate) decreased alcohol self-administration similarly to COR659; all other compounds produced modest, or even no, effect on alcohol self-administration. COR659 excluded, no compound altered chocolate self-administration. These results confirm and extend the ability of COR659 to reduce several behaviors motivated by alcohol and palatable food in rats. Comparison of COR659 to its analogues provided disparate results that do not currently allow any conclusive structure-activity relationship to be hypothesized, as their diverse pharmacological profile apparently does not depend on physicochemical properties. •COR659 reduced alcohol self-administration after repeated treatment.•COR659 reduced chocolate self-administration after repeated treatment.•Acute COR659 suppressed cue-induced reinstatement of alcohol seeking.•Effects of several analogues did not suggest any structure-activity relationship.
Pronounced antiepileptic activity of the subtype‐selective GABA A ‐positive allosteric modulator PF‐06372865 in the GAERS absence epilepsy model
Antiepileptic drugs that modulate GABA have the potential to aggravate or improve the symptoms of absence epilepsy. PF-06372865 is a positive allosteric modulator (PAM) of α2/3/5 subunit-containing GABA receptors with minimal activity at α1-containing receptors, which are believed to mediate many of the adverse events associated with benzodiazepines. The aim of this study was to assess the antiepileptic effect of PF-06372865 in a preclinical model of absence seizures. Genetic absence epilepsy rats from Strasbourg (GAERS) was implanted with four cortical electrodes over the frontoparietal cortex, and the number and cumulated duration of spike-and-wave discharges (SWDs) were recorded for 10-90 minutes following administration of vehicle, PF-06372865, and positive controls diazepam and valproate. PF-06372865 (0.3, 1, 2, 10 mg kg ) dose-dependently reduced the expression of SWDs, including full suppression at the highest doses by 30 minutes after administration. PF-06372865 demonstrated robust efficacy in suppressing SWDs in the GAERS model of absence epilepsy. To our knowledge, this is the first demonstration of antiepileptic activity of an α2/3/5-subtype-selective GABA PAM in a model of absence epilepsy. Further study of the antiepileptic properties of PF-06372865 is warranted in patients with absence seizures.