Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,927
result(s) for
"Genotyping Techniques - methods"
Sort by:
Genotyping‐by‐sequencing approaches to characterize crop genomes: choosing the right tool for the right application
by
Scheben, Armin
,
Edwards, David
,
Batley, Jacqueline
in
Agricultural economics
,
Bioinformatics
,
Breeding
2017
Summary
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high‐throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping‐by‐sequencing (GBS) methods include over a dozen reduced‐representation sequencing (RRS) approaches and at least four whole‐genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best‐suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker‐assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small‐ to moderate‐sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost‐effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost‐effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.
Journal Article
TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline
2014
Genotyping by sequencing (GBS) is a next generation sequencing based method that takes advantage of reduced representation to enable high throughput genotyping of large numbers of individuals at a large number of SNP markers. The relatively straightforward, robust, and cost-effective GBS protocol is currently being applied in numerous species by a large number of researchers. Herein we describe a bioinformatics pipeline, TASSEL-GBS, designed for the efficient processing of raw GBS sequence data into SNP genotypes. The TASSEL-GBS pipeline successfully fulfills the following key design criteria: (1) Ability to run on the modest computing resources that are typically available to small breeding or ecological research programs, including desktop or laptop machines with only 8-16 GB of RAM, (2) Scalability from small to extremely large studies, where hundreds of thousands or even millions of SNPs can be scored in up to 100,000 individuals (e.g., for large breeding programs or genetic surveys), and (3) Applicability in an accelerated breeding context, requiring rapid turnover from tissue collection to genotypes. Although a reference genome is required, the pipeline can also be run with an unfinished \"pseudo-reference\" consisting of numerous contigs. We describe the TASSEL-GBS pipeline in detail and benchmark it based upon a large scale, species wide analysis in maize (Zea mays), where the average error rate was reduced to 0.0042 through application of population genetic-based SNP filters. Overall, the GBS assay and the TASSEL-GBS pipeline provide robust tools for studying genomic diversity.
Journal Article
R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations
by
Furlotte, Nicholas A
,
Prins, Pjotr
,
Sen, Śaunak
in
Animals
,
Chromosome Mapping - methods
,
Collaboration
2019
R/qtl2 is an interactive software environment for mapping quantitative trait loci (QTL) in experimental populations. The R/qtl2 software expands the scope of the widely-used R/qtl software package to include multiparental populations, better handles modern high-dimensional data...
R/qtl2 is an interactive software environment for mapping quantitative trait loci (QTL) in experimental populations. The R/qtl2 software expands the scope of the widely used R/qtl software package to include multiparent populations derived from more than two founder strains, such as the Collaborative Cross and Diversity Outbred mice, heterogeneous stocks, and MAGIC plant populations. R/qtl2 is designed to handle modern high-density genotyping data and high-dimensional molecular phenotypes, including gene expression and proteomics. R/qtl2 includes the ability to perform genome scans using a linear mixed model to account for population structure, and also includes features to impute SNPs based on founder strain genomes and to carry out association mapping. The R/qtl2 software provides all of the basic features needed for QTL mapping, including graphical displays and summary reports, and it can be extended through the creation of add-on packages. R/qtl2, which is free and open source software written in the R and C++ programming languages, comes with a test framework.
Journal Article
GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs
by
Gudbjartsson, Daniel F.
,
Kristmundsdottir, Snaedis
,
Stefansson, Kari
in
45/23
,
631/114/794
,
631/208/457/649/2157
2019
Analysis of sequence diversity in the human genome is fundamental for genetic studies. Structural variants (SVs) are frequently omitted in sequence analysis studies, although each has a relatively large impact on the genome. Here, we present GraphTyper2, which uses pangenome graphs to genotype SVs and small variants using short-reads. Comparison to the syndip benchmark dataset shows that our SV genotyping is sensitive and variant segregation in families demonstrates the accuracy of our approach. We demonstrate that incorporating public assembly data into our pipeline greatly improves sensitivity, particularly for large insertions. We validate 6,812 SVs on average per genome using long-read data of 41 Icelanders. We show that GraphTyper2 can simultaneously genotype tens of thousands of whole-genomes by characterizing 60 million small variants and half a million SVs in 49,962 Icelanders, including 80 thousand SVs with high-confidence.
Structural variants may be omitted in sequence analysis despite their importance in genome variation and phenotypic impact. Here the authors present GraphTyper2, which uses pangenome graphs to genotype structural variants using short-reads and can be applied in large-scale sequencing studies.
Journal Article
Genotyping structural variants in pangenome graphs using the vg toolkit
by
Heller, David
,
Eizenga, Jordan
,
Dawson, Eric T.
in
Accuracy
,
Animal Genetics and Genomics
,
Bioinformatics
2020
Structural variants (SVs) remain challenging to represent and study relative to point mutations despite their demonstrated importance. We show that variation graphs, as implemented in the vg toolkit, provide an effective means for leveraging SV catalogs for short-read SV genotyping experiments. We benchmark vg against state-of-the-art SV genotypers using three sequence-resolved SV catalogs generated by recent long-read sequencing studies. In addition, we use assemblies from 12 yeast strains to show that graphs constructed directly from aligned de novo assemblies improve genotyping compared to graphs built from intermediate SV catalogs in the VCF format.
Journal Article
Systematic comparison of variant calling pipelines using gold standard personal exome variants
2015
The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2 and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500 and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes.
Journal Article
Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research
by
Livraghi-Butrico, Alessandra
,
Mohlke, Karen L
,
Moy, Sheryl S
in
Animal models
,
Animals
,
Annotations
2020
Abstract
The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.
Journal Article
Clinical exome sequencing: results from 2819 samples reflecting 1000 families
2017
We report our results of 1000 diagnostic WES cases based on 2819 sequenced samples from 54 countries with a wide phenotypic spectrum. Clinical information given by the requesting physicians was translated to HPO terms. WES processes were performed according to standardized settings. We identified the underlying pathogenic or likely pathogenic variants in 307 families (30.7%). In further 253 families (25.3%) a variant of unknown significance, possibly explaining the clinical symptoms of the index patient was identified. WES enabled timely diagnosing of genetic diseases, validation of causality of specific genetic disorders of PTPN23, KCTD3, SCN3A, PPOX, FRMPD4, and SCN1B, and setting dual diagnoses by detecting two causative variants in distinct genes in the same patient. We observed a better diagnostic yield in consanguineous families, in severe and in syndromic phenotypes. Our results suggest that WES has a better yield in patients that present with several symptoms, rather than an isolated abnormality. We also validate the clinical benefit of WES as an effective diagnostic tool, particularly in nonspecific or heterogeneous phenotypes. We recommend WES as a first-line diagnostic in all cases without a clear differential diagnosis, to facilitate personal medical care.
Journal Article
An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping
2013
Highly parallel SNP genotyping platforms have been developed for some important crop species, but these platforms typically carry a high cost per sample for first-time or small-scale users. In contrast, recently developed genotyping by sequencing (GBS) approaches offer a highly cost effective alternative for simultaneous SNP discovery and genotyping. In the present investigation, we have explored the use of GBS in soybean. In addition to developing a novel analysis pipeline to call SNPs and indels from the resulting sequence reads, we have devised a modified library preparation protocol to alter the degree of complexity reduction. We used a set of eight diverse soybean genotypes to conduct a pilot scale test of the protocol and pipeline. Using ApeKI for GBS library preparation and sequencing on an Illumina GAIIx machine, we obtained 5.5 M reads and these were processed using our pipeline. A total of 10,120 high quality SNPs were obtained and the distribution of these SNPs mirrored closely the distribution of gene-rich regions in the soybean genome. A total of 39.5% of the SNPs were present in genic regions and 52.5% of these were located in the coding sequence. Validation of over 400 genotypes at a set of randomly selected SNPs using Sanger sequencing showed a 98% success rate. We then explored the use of selective primers to achieve a greater complexity reduction during GBS library preparation. The number of SNP calls could be increased by almost 40% and their depth of coverage was more than doubled, thus opening the door to an increase in the throughput and a significant decrease in the per sample cost. The approach to obtain high quality SNPs developed here will be helpful for marker assisted genomics as well as assessment of available genetic resources for effective utilisation in a wide number of species.
Journal Article
MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform
2015
Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing
de novo
single-nucleotide polymorphism discovery and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities.
Journal Article