Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,905
result(s) for
"Hypoglycemic Agents - analysis"
Sort by:
Ultrasound–Microwave Combined Extraction of Novel Polysaccharide Fractions from Lycium barbarum Leaves and Their In Vitro Hypoglycemic and Antioxidant Activities
by
Liu, Zi-Qi
,
Feng, Jing
,
Quan, Na
in
antioxidant capacity
,
Antioxidants
,
Antioxidants - chemistry
2023
Ultrasound–microwave combined extraction (UMCE), gradient ethanol precipitation, chemical characterization, and antioxidant and hypoglycemic activities of Lycium barbarum leaf polysaccharides (LLP) were systematically studied. The optimal conditions for UMCE of LLP achieved by response surface method (RSM) were as follows: microwave time of 16 min, ultrasonic time of 20 min, particle size of 100 mesh, and ratio of liquid to solid of 55:1. Three novel polysaccharide fractions (LLP30, LLP50, LLP70) with different molecular weights were obtained by gradient ethanol precipitation. Polysaccharide samples exhibited scavenging capacities against ABTS and DPPH radicals and inhibitory activities against α-glucosidase and α-amylase. Among the three fractions, LLP30 possessed relatively high antioxidant and hypoglycemic activities in vitro, which showed a potential for becoming a nutraceutical or a phytopharmaceutical for prevention and treatment of hyperglycemia or diabetes.
Journal Article
Comprehensive evaluation on nutritional characteristics and anti-hyperglycemic active ingredients of different varieties of Yam
2025
Yam is a versatile economic crop that serves both medicinal and dietary purposes. Dehua County, located in Fujian Province, China, is renowned as one of the major yam production areas, with a cultivation history spanning over 600 years. It has successfully cultivated Qingfeng yam and Ziyu yam, both of which have been recognized with China’s “Geographical Indications for Agricultural Products.” However, no comprehensive studies have been conducted to evaluate their quality. This study meticulously utilized the authentic medicinal material “Iron yam” as a benchmark, employing advanced techniques such as high-performance liquid chromatography (HPLC), ultraviolet spectrophotometry, and flame atomic absorption spectrometry to systematically analyze the nutritional and hypoglycemic active components of three distinct yam varieties. In order to interpret the data, descriptive statistics, correlation analysis, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), cluster analysis and multiple linear regression analysis were systematically applied. The results revealed significant variations in the concentrations of various indicators across the three yam types. Correlation analysis identified 65 pairs of indicators with exceptionally strong correlations and 39 pairs with statistically significant associations. Additionally, the principal component analysis demonstrated that Iron yam exhibited the most favorable overall quality. Notably, Ziyu yam, characterized by its high concentration of hypoglycemic active compounds, emerged as a promising raw material for the production of hypoglycemic products, showcasing significant potential in this field.
Journal Article
Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana
by
Kaul, Vijay K.
,
Shivanna, Naveen
,
Naika, Mahadev
in
Acids
,
alanine transaminase
,
animal disease models
2013
Stevia rebaudiana Bertoni has been used for the treatment of diabetes in, for example, Brazil, although a positive effect on antidiabetic and its complications has not been unequivocally demonstrated. This herb also has numerous therapeutic properties which have been proven safe and effective over hundreds of years. Streptozotocin is a potential source of oxidative stress that induces genotoxicity.
We studied the effects of stevia leaves and its extracted polyphenols and fiber on streptozotocin induced diabetic rats. We hypothesize that supplementation of polyphenols extract from stevia to the diet causes a reduction in diabetes and its complications.
Eighty Wistar rats were randomly divided into 8 groups; a standard control diet was supplemented with either stevia whole leaves powder (4.0%) or polyphenols or fiber extracted from stevia separately and fed for one month. Streptozotocin (60mg/kg body weight, i.p) was injected to the diabetic groups on the 31st day. Several indices were analyzed to assess the modulation of the streptozotocin induced oxidative stress, toxicity and blood glucose levels by stevia.
The results showed a reduction of blood glucose, ALT and AST, and increment of insulin level in the stevia whole leaves powder and extracted polyphenols fed rats compared to control diabetic group. Its feeding also reduced the MDA concentration in liver and improved its antioxidant status through antioxidant enzymes. Glucose tolerance and insulin sensitivity were improved by their feeding. Streptozotocin was also found to induce kidney damage as evidenced by decreased glomerular filtration rate; this change was however alleviated in the stevia leaves and extracted polyphenol fed groups.
The results suggested that stevia leaves do have a significant role in alleviating liver and kidney damage in the STZ-diabetic rats besides its hypoglycemic effect. It might be adequate to conclude that stevia leaves could protect rats against streptozotocin induced diabetes, reduce the risk of oxidative stress and ameliorate liver and kidney damage.
Journal Article
Effects of extraction methods on physicochemical properties and hypoglycemic activities of polysaccharides from coarse green tea
2020
Coarse tea is made of mature tea plant (Camellia sinensis L.) shoots and is generally discarded as a worthless crop product, but has been proved an excellent material for the treatment of diabetes. This study aims to evaluate the effects of the extraction techniques WE (water extraction), UAE (ultrasound-assisted extraction), MAE (microwave-assisted extraction), and EE (enzyme extraction) on the physicochemical properties and antidiabetic activities of polysaccharides from coarse tea (CTPSs). The results showed that all four CTPSs had homogeneity in the monosaccharide types and similar IR (Infrared spectroscopy) characteristic absorption peaks, but differed in monosaccharide proportion and molecular weight distribution. Compared with the other three extraction techniques, CCTPS extracted by EE had the lowest protein content, the highest total sugar content of 71.83% and a polysaccharide yield of 4.52%. In addition, EE-CTPS had the best hypoglycemic activity that was better than ordinary green tea polysaccharides, the α-glucosidase and α-amylase inhibitory activities of EE-CTPS were highest in the range of 2–10 mg/mL compared with the other three CTPSs, which may be related to its smaller molecular weight and porous structure. The results suggested that the EE method was a good way to extract polysaccharides from coarse tea for food and pharmaceutical production.
Journal Article
Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review
2021
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.
Journal Article
Polyphenols and Alkaloids in Byproducts of Longan Fruits (Dimocarpus Longan Lour.) and Their Bioactivities
by
Li, Zhi-Chun
,
Li, Chang-Bao
,
Li, Li
in
Alkaloids - analysis
,
Alkaloids - pharmacology
,
Antioxidants
2019
The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.
Journal Article
Hydroethanolic Extract of Urtica dioica L. (Stinging Nettle) Leaves as Disaccharidase Inhibitor and Glucose Transport in Caco-2 Hinderer
by
Abu-Reidah, Ibrahim M.
,
Altamimi, Mohammad A.
,
Altamimi, Almothana
in
Antidiabetics
,
Caco-2
,
Caco-2 Cells
2022
Herbal treatment for diabetes mellitus is widely used. The pharmacological activity is thought to be due to the phenolic compounds found in the plant leaves. The present study aims to investigate the phytochemical composition of Urtica dioica (UD) hydroethanolic extract and to screen its antidiabetic activity by disaccharidase hindering and glucose transport in Caco-2 cells. The results have shown that a total of 13 phenolic compounds in this work, viz. caffeic and coumaric acid esters (1, 2, 4–7, 10), ferulic derivative (3), and flavonoid glycosides (8, 9, 11–13), were identified using HPLC-DAD-ESI/MS2. The most abundant phenolic compounds were 8 (rutin) followed by 6 (caffeoylquinic acid III). Less predominant compounds were 4 (caffeoylquinic acid II) and 11 (kaempferol-O-rutinoside). The UD hydroethanolic extract showed 56%, 45%, and 28% (1.0 mg/mL) inhibition level for maltase, sucrase, and lactase, respectively. On the other hand, glucose transport was 1.48 times less at 1.0 mg/mL UD extract compared with the control containing no UD extract. The results confirmed that U. dioica is a potential antidiabetic herb having both anti-disaccharidase and glucose transport inhibitory properties, which explained the use of UD in traditional medicine.
Journal Article
Biological evaluation of Safrole oil and Safrole oil Nanoemulgel as antioxidant, antidiabetic, antibacterial, antifungal and anticancer
2021
Background
Safrole is a natural compound extracted from various plants, and has shown various biological activities. The current study aimed to investigate the antioxidant, antidiabetic, antimicrobial, and anticancer activity of safrole oil and to study the influence of safrole nanoemulgel on these activities.
Methods
The antioxidant and antidiabetic in-vitro assays were conducted using standard biomedical methods. The safrole oil nanoemulgel was developed using a self-emulsifying technique. Then the antimicrobial activity of the safrole oil and safrole nanoemulgel were performed on different microbial species, and cytotoxicity was determined against Hep3B cancer cell lines using the MTS assay.
Results
Safrole oil showed moderate antioxidant activity compared with standard Trolox, with IC
50
value 50.28 ± 0.44 and 1.55 ± 0.32 μg/ml, respectively. Moreover, it had potent α-amylase inhibitory activity (IC
50
11.36 ± 0.67 μg/ml) compared with Acarbose (IC
50
value 5.88 ± 0.63). The safrole nanoemulgel had pseudo-plastic behaviour, droplet sizes below 200 nm, a polydispersity index (PDI) below 0.3, and a zeta potential of less than − 30 mV. Safrole oil has potential antimicrobial and anticancer activities, and these activities were improved with safrole nanoemulgel.
Conclusion
The safrole oil may be applied for the prevention and treatment of oxidative stress, diabetes, different microbial species and cancer, and these activities could be improved by nano-carriers.
Journal Article
Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin
by
Takasu, Soo
,
Nakagawa, Kiyotaka
,
Yamagishi, Kenji
in
1-Deoxynojirimycin - administration & dosage
,
1-Deoxynojirimycin - analysis
,
1-Deoxynojirimycin - metabolism
2018
1-Deoxynojirimycin (DNJ) is a potent α-glucosidase inhibitor and thus beneficial for prevention of diabetes. While we have succeeded in obtaining the culture supernatant extract (CSE) rich in DNJ from microorganism source, information regarding its anti-hyperglycemic effect and safety were still limited. Therefore, this study was aimed to evaluate the anti-hyperglycemic effect and safety of microorganism DNJ. Oral sucrose tolerance test was performed, and the result showed that CSE was able to significantly suppress the blood glucose elevation and suggested DNJ as the main active compound. To determine its safety, the absorption and excretion of microorganism DNJ were evaluated using 15N labeling method. Our findings investigated the recovery rate of 15N from DNJ reached 80% up to 48 hours after oral administration, suggesting its rapid excretion, suggesting the safety of DNJ. This study verified the functional properties and safety of DNJ from microorganisms, suggesting its potential use for functional purpose.
Journal Article
Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples
by
Sakkas, Vasilios
,
Sleiman, Mohamad
,
Misolas, Augosto
in
Adsorption
,
Analytical chemistry
,
anti-diabetic drugs
2024
Due to the increased prevalence of diabetes, the consumption of anti-diabetic drugs for its treatment has likewise increased. Metformin is an anti-diabetic drug that is commonly prescribed for patients with type 2 diabetes and has been frequently detected in surface water and wastewaters, thus representing an emerging contaminant. Metformin can be prescribed in combination with other classes of anti-diabetic drugs; however, these drugs are not sufficiently investigated in environmental samples. Fabric phase sorptive extraction (FPSE) has emerged as a simple and green method for the extraction of analytes in environmental samples. In this study, FPSE coupled with a high-performance liquid chromatography diode array detector (HPLC-DAD) was employed for the simultaneous analysis of different classes of anti-diabetic drugs (metformin, dapagliflozin, liraglutide, pioglitazone, gliclazide, glimepiride, glargine, repaglinide, sitagliptin, and vildagliptin) in environmental water samples. Four different fabric membranes were synthesized but the microfiber glass filter coated with sol-gel polyethylene glycol (PEG 300) was observed to be the best FPSE membrane. The parameters affecting the FPSE process were optimized using a combination of one-factor-at-a-time processes and the design of experiments. The FPSE was evaluated as a green extraction method, based on green sample preparation criteria. The FPSE-HPLC-DAD method achieved acceptable validation results and was applied for the simultaneous analysis of anti-diabetic drugs in surface and wastewater samples. Glimepiride was detected below the quantification limit in both lake and river water samples. Dapagliflozin, liraglutide, and glimepiride were detected at 69.0 ± 1.0 μg·L−1, 71.9 ± 0.4 μg·L−1, and 93.9 ± 1.3 μg·L−1, respectively, in the city wastewater influent. Dapagliflozin and glimepiride were still detected below the quantification limit in city wastewater effluent. For the hospital wastewater influent, metformin and glimepiride were detected at 1158 ± 21 μg·L−1 and 28 ± 0.8 μg·L−1, respectively, while only metformin (392.6 ± 7.7 μg·L−1) was detected in hospital wastewater effluent.
Journal Article