Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,261,325
result(s) for
"Life (Biology.)"
Sort by:
Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination
by
Gangneux, Christophe
,
Laval, Karine
,
Lerouge, Patrice
in
Aphanomyces - cytology
,
Aphanomyces - drug effects
,
Aphanomyces - growth & development
2012
Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.
Journal Article
Life on Earth
by
Richards, Jon, 1970- author, editor
,
Simkins, Ed, author, book designer
,
Richards, Jon, 1970- Infographics
in
Life (Biology) Juvenile literature.
,
Biology Juvenile literature.
,
Life (Biology).
2018
Describes all the biological processes behind life on Earth.
Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis
2019
Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that
S. aureus
clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after
S. aureus
apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in
S. aureus
clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased
S. aureus
proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset
of S. aureus
infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.
Journal Article
Life processes
Takes a look at the ways that living things function, presenting the seven life processes of movement, respiration, sensitivity, nutrition, excretion, reproduction, and growth.
An Endothelin-1 Switch Specifies Maxillomandibular Identity
by
Kawamura, Yumiko
,
Uchijima, Yasunobu
,
Ekker, Marc
in
Animals
,
Basic Helix-Loop-Helix Transcription Factors - genetics
,
Basic Helix-Loop-Helix Transcription Factors - metabolism
2008
Articulated jaws are highly conserved structures characteristic of gnathostome evolution. Epithelial-mesenchymal interactions within the first pharyngeal arch (PA1) instruct cephalic neural crest cells (CNCCs) to form the different skeletal elements of the jaws. The endothelin-1 (Edn1)/endothelin receptor type-A (Ednra)→Dlx5/6→Hand2 signaling pathway is necessary for lower jaw formation. Here, we show that the Edn1 signaling is sufficient for the conversion of the maxillary arch to mandibular identity. Constitutive activation of Ednra induced the transformation of upper jaw, maxillary, structures into lower jaw, mandibular, structures with duplicated Meckel's cartilage and dermatocranial jaws constituted by 4 dentary bones. Misexpression of Hand2 in the Ednra domain caused a similar transformation. Skeletal transformations are accompanied by neuromuscular remodeling. Ednra is expressed by most CNCCs, but its constitutive activation affects predominantly PA1. We conclude that after migration CNCCs are not all equivalent, suggesting that their specification occurs in sequential steps. Also, we show that, within PA1, CNCCs are competent to form both mandibular and maxillary structures and that an Edn1 switch is responsible for the choice of either morphogenetic program.
Journal Article
A brief illustrated history of life on Earth
by
Parker, Steve, 1952- author
,
West, David, 1956- illustrator
in
Evolution (Biology) Juvenile literature.
,
Life (Biology) Juvenile literature.
,
Evolution (Biology)
2017
\"[This book] charts the evolution of living species all the way from 2.5 billion years ago, through the Triassic, Jurassic, and Cretaceous periods and right through to today\"--Amazon.com.
Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco
by
Tomonori Kawano
,
Delphine Arbelet-Bonnin
,
Takashi Kadono
in
[CHIM.POLY]Chemical Sciences/Polymers
,
[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry
,
[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM]
2018
Abstract
Background and Aims
Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood.
Methods
Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile.
Key Results
Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis.
Conclusions
Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.
Journal Article
Your guide to life on Earth
by
Arbuthnott, Gill, author
,
Mones, Marc, illustrator
,
Arbuthnott, Gill. Drawn to science
in
Life (Biology) Juvenile literature.
,
Biology Classification Juvenile literature.
,
Life (Biology)
2016
\"What exactly is a living thing? What is it made of? Your Guide to Life on Earth starts with the very basics of life and provides bite-sized chunks of information to explain in an easy-to-understand way the science behind the mystery of life on Earth\"-- Provided by publisher.
Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
by
Architecture et fonction des macromolécules biologiques (AFMB) ; Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
,
Roger, Andrew
,
Gentekaki, Eleni
in
Amino acid sequence
,
Amino acids
,
Bacteriology
2017
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Journal Article