Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
18,657
result(s) for
"Long-term memory."
Sort by:
Noradrenergic arousal after encoding reverses the course of systems consolidation in humans
2021
It is commonly assumed that episodic memories undergo a time-dependent systems consolidation process, during which hippocampus-dependent memories eventually become reliant on neocortical areas. Here we show that systems consolidation dynamics can be experimentally manipulated and even reversed. We combined a single pharmacological elevation of post-encoding noradrenergic activity through the α
2
-adrenoceptor antagonist yohimbine with fMRI scanning both during encoding and recognition testing either 1 or 28 days later. We show that yohimbine administration, in contrast to placebo, leads to a time-dependent increase in hippocampal activity and multivariate encoding-retrieval pattern similarity, an indicator of episodic reinstatement, between 1 and 28 days. This is accompanied by a time-dependent decrease in neocortical activity. Behaviorally, these neural changes are linked to a reduced memory decline over time after yohimbine intake. These findings indicate that noradrenergic activity shortly after encoding may alter and even reverse systems consolidation in humans, thus maintaining vividness of memories over time.
Memories are assumed to undergo a time-dependent systems consolidation, during which hippocampal contributions to memory decrease while neocortical contributions increase. Here, the authors show that noradrenergic arousal after encoding may reverse this course of systems consolidation in humans
Journal Article
From short-term store to multicomponent working memory: The role of the modal model
by
Hitch, Graham J.
,
Allen, Richard J.
,
Baddeley, Alan D.
in
Alzheimer's disease
,
Behavioral Science and Psychology
,
Cognition
2019
The term “modal model” reflects the importance of Atkinson and Shiffrin’s paper in capturing the major developments in the cognitive psychology of memory that were achieved over the previous decade, providing an integrated framework that has formed the basis for many future developments. The fact that it is still the most cited model from that period some 50 years later has, we suggest, implications for the model itself and for theorising in psychology more generally. We review the essential foundations of the model before going on to discuss briefly the way in which one of its components, the short-term store, had influenced our own concept of a multicomponent working memory. This is followed by a discussion of recent claims that the concept of a short-term store be replaced by an interpretation in terms of activated long-term memory. We present several reasons to question these proposals. We conclude with a brief discussion of the implications of the longevity of the modal model for styles of theorising in cognitive psychology.
Journal Article
Visual memory, the long and the short of it: A review of visual working memory and long-term memory
by
Schurgin, Mark W.
in
Behavioral Science and Psychology
,
Cognition & reasoning
,
Cognitive Development
2018
The majority of research on visual memory has taken a compartmentalized approach, focusing exclusively on memory over shorter or longer durations, that is, visual working memory (VWM) or visual episodic long-term memory (VLTM), respectively. This tutorial provides a review spanning the two areas, with readers in mind who may only be familiar with one or the other. The review is divided into six sections. It starts by distinguishing VWM and VLTM from one another, in terms of how they are generally defined and their relative functions. This is followed by a review of the major theories and methods guiding VLTM and VWM research. The final section is devoted toward identifying points of overlap and distinction across the two literatures to provide a synthesis that will inform future research in both fields. By more intimately relating methods and theories from VWM and VLTM to one another, new advances can be made that may shed light on the kinds of representational content and structure supporting human visual memory.
Journal Article
The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens
by
Perovic, Vladimir R.
,
Veljkovic, Nevena
,
Antczak, Magdalena
in
Animal Genetics and Genomics
,
Animals
,
Annotations
2019
Background
The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.
Results
Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in
Candida albicans
and
Pseudomonas aureginosa
genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in
Drosophila melanogaster
, which we suspected of being involved in long-term memory.
Conclusion
We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in
C. albicans
and
D. melanogaster
, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.
Journal Article
Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho
by
Murphy, Tytus
,
Gage, Fred H
,
Selda, Ahmet
in
Cognition
,
Cognition & reasoning
,
DNA microarrays
2021
Daily calorie restriction (CR) and intermittent fasting (IF) enhance longevity and cognition but the effects and mechanisms that differentiate these two paradigms are unknown. We examined whether IF in the form of every-other-day feeding enhances cognition and adult hippocampal neurogenesis (AHN) when compared to a matched 10% daily CR intake and ad libitum conditions. After 3 months under IF, female C57BL6 mice exhibited improved long-term memory retention. IF increased the number of BrdU-labeled cells and neuroblasts in the hippocampus, and microarray analysis revealed that the longevity gene Klotho (Kl) was upregulated in the hippocampus by IF only. Furthermore, we found that downregulating Kl in human hippocampal progenitor cells led to decreased neurogenesis, whereas Kl overexpression increased neurogenesis. Finally, histological analysis of Kl knockout mice brains revealed that Kl is required for AHN, particularly in the dorsal hippocampus. These data suggest that IF is superior to 10% CR in enhancing memory and identifies Kl as a novel candidate molecule that regulates the effects of IF on cognition likely via AHN enhancement.
Journal Article
Visual Long-Term Memory Has the Same Limit on Fidelity as Visual Working Memory
by
Brady, Timothy F.
,
Konkle, Talia
,
Gill, Jonathan
in
Adolescent
,
Adult
,
Biological and medical sciences
2013
Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.
Journal Article
Intrinsically regulated learning is modulated by synaptic dopamine signaling
by
Marco-Pallares, Josep
,
Riba, Jordi
,
Ripollés, Pablo
in
Adult
,
Aprenentatge
,
Biomedical research
2018
We recently provided evidence that an intrinsic reward-related signal—triggered by successful learning in absence of any external feedback—modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioral sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hr only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.
Journal Article
The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation
by
Singmann, Henrik
,
Oberauer, Klaus
,
Bartsch, Lea M.
in
Adult
,
Behavioral Science and Psychology
,
Cognition
2018
Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.
Journal Article