Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,246
result(s) for
"M cells"
Sort by:
Intestinal Peyer’s Patches: Structure, Function, and In Vitro Modeling
2023
Backgound:
Considering the important role of the Peyer’s patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases.
Methods:
In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish
in vitro
intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA
+
B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed.
Results:
PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses.
Conclusion:
Current
in vitro
PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.
Journal Article
Oral Immunization With a M Cell-Targeting Recombinant L. Lactis Vaccine LL-plSAM-FVpE Stimulate Protective Immunity Against H. Pylori in Mice
2022
There are many virulence factors of H. pylori that contribute in diverse ways to gastric disease. Therefore, designing multivalent epitope vaccines against many key virulence factors virulence factors of H. pylori is a promising strategy to control H. pylori infection. In previous studies, we constructed a multivalent epitope vaccine FVpE against four key virulence factors of H. pylori (Urease, CagA, VacA, and NAP), and oral immunization with the FVpE vaccine plus a polysaccharide adjuvant (PA) containing lycium barbarum polysaccharide and chitosan could provide protection against H. pylori infection in the Mongolian gerbil model. Oral vaccines have many advantages over injected vaccines, such as improved safety and compliance, and easier manufacturing and administration. However, the harsh gastrointestinal (GI) environment, such as gastric acid and proteolytic enzymes, limits the development of oral vaccines to some extent. Oral vaccines need a gastrointestinal delivery system with high safety, low price and promoting vaccine antigen to stimulate immune response in the gastrointestinal mucosa. Lactic acid bacteria are gastrointestinal probiotics that have unique advantages as a delivery system for oral vaccines. In this study, a M cell-targeting surface display system for L. lactis named plSAM was designed to help vaccine antigens to stimulate effective immune responses in the gastrointestinal tract, and a M cell-targeting recombinant L. lactis vaccine LL-plSAM-FVpE was constructed by using the surface display system plSAM. recombinant L. lactis vaccine LL-plSAM-FVpE could secretively express the SAM-FVpE protein and display it on the bacterial surface. Moreover, experimental results confirmed that LL-plSAM-FVpE had an enhanced M cell-targeting property. In addition, LL-plSAM-FVpE had excellent M cell-targeting property to promote the phagocytosis and transport of the antigen SAM-FVpE by gastrointestinal M cells. More importantly, oral immunization of LL-plSAM-FVpE or SAM-FVpE plus PA can stimulate IgG and sIgA antibodies and CD4 + T cell immune responses against four virulence factors of H. pylori (Urease, CagA, VacA, and NAP), thus providing protective immunity against H. pylori infection in mice. The M cell-targeting recombinant L. lactis vaccine against various key H. pylori virulence factors could be a promising vaccine candidate for controlling H. pylori infection.
Journal Article
Cytoplasmic expression of a model antigen with M Cell-Targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route
2021
•Cytoplasmic antigen in LAB could sufficiently induce antigen-specific immunogenicity.•Spontaneous release of cytoplasmic antigen from LAB is crucial for vaccine efficacy.•Antigen expression level matters rather than its localization for LAB vaccine design.•M cell targeting moiety could improve immunogenicity of an antigen in oral vaccine.
Lactic acid bacteria (LAB) have been widely studied as mucosal vaccine delivery carriers against many infectious diseases for heterologous expression of protein antigens. There are three antigen expression strategies for LAB: cytoplasmic expression (CE), cell surface display (SD), and extracellular secretion (ES). Despite the generally higher protein expression level and many observations of antigen-specific immunogenicity in CE, its application as a mucosal vaccine has been overlooked relative to SD and ES because of the antigens enclosed by the LAB cell wall. We hypothesized that the antigens in CE could be released from the LAB into the intestinal lumen before host bacterial access to gut-associated lymphoid tissue (GALT), which could contribute to antigen-specific immune responses after oral administration. To elucidate this hypothesis, three recombinant Lactobacillus plantarum (LP) strains were constructed to produce a model antigen, BmpB, with or without an M cell-targeting moiety, and their immunogenicities were analyzed comparatively as oral vaccines in mouse model. The data indicated that the recombinant LPs producing BmpBs with different conformations could induce mucosal immunity differentially. This suggests that the cytoplasmic antigens in LAB could be released into the intestinal lumen, subsequently translocated through M cells, and stimulate the GALT to generate antigen-specific immune responses. Therefore, the CE strategy has great potential, especially in the application of oral LAB vaccines as well as SD and ES strategies. This research provides a better understanding of the mechanism for recombinant oral LAB vaccines and gives insight to the future design of LAB vaccines and oral delivery applications for useful therapeutic proteins.
Journal Article
M cells targeted H. pylori antigen SAM-FAdE displayed on bacterium-like particles induce protective immunity
2025
Background
Helicobacter pylori
(
H. pylori
), a specific bacterium capable of surviving in the acidic environment of the stomach, has been recognized as a group of causative agents of gastric cancer. Therefore, the development of mucosal vaccines against
H. pylori
is expected to provide an important direction for the treatment of chronic gastritis and the prevention of gastric cancer.
Methods and results
In this study, we used bacteria-like particles (BLPs) obtained by treating
Lactic acid bacteria
(
L. lactis
) with hot acid, and successfully displayed the M cell-targeted
H. pylori
multi-epitope purified antigen SAM-FAdE, with 90% display efficiency. In addition, BLPs-SAM-FAdE can effectively target M cell models and M cells of mouse Peyer’s patches (PPs) through oral immunization, promote the transport of particulate vaccines to dendritic cells (BMDCs) and stimulate their maturation, significantly increased proportion of plasma cells and germinal centers B cells. This indicates that the vaccination can induce notable antigen-specific mucosal immune responses (production of sIgA), CD4
+
T cell responses (Th1/Th2/Th17) and humoral immune responses (production of serum IgG). Furthermore, oral BLPs-SAM-FAdE dramatically reduced the
H. pylori
adhesion and specific 16S rRNA expression of
H. pylori
in gastric mucosal tissue, protecting gastric tissue from damage.
Conclusion
BLPs-SAM-FAdE can significantly reduce the adhesion of
H. pylori
in gastric mucosal tissue and inhibit gastritis and gastric damage caused by
H. pylori
infection.
Journal Article
Application of spatial transcriptomics analysis using the Visium system for the mouse nasal cavity after intranasal vaccination
2023
Intranasal vaccines that elicit mucosal immunity are deemed effective against respiratory tract infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their ability to induce humoral immunity characterized by immunoglobulin A (IgA) and IgG production is low. It has been reported that vaccination with a mixture of a viscous base carboxyvinyl polymer (CVP) and viral antigens induced robust systemic and mucosal immune responses. In this study, we analyzed the behavior of immunocompetent cells in the nasal cavity over time by spatial transcriptome profiling induced immediately after antigen vaccination using CVP. We established a method for performing spatial transcriptomics using the Visium system in the mouse nasal cavity and analyzed gene expression profiles within the nasal cavity after intranasal vaccination. Glycoprotein 2 ( Gp2 ) - , SRY-box transcription factor 8 ( Sox8 ) - , or Spi-B transcription factor ( Spib )-expressing cells were increased in the nasal passage (NP) region at 3–6 hr after SARS-CoV-2 spike protein and CVP (S-CVP) vaccination. The results suggested that microfold (M) cells are activated within a short period of time (3–6 hr). Subsequent cluster analysis of cells in the nasal cavity showed an increase in Cluster 9 at 3–6 hr after intranasal vaccination with the S-CVP. We found that Il6 in Cluster 9 had the highest log2 fold values within the NP at 3–6 hr. A search for gene expression patterns similar to that of Il6 revealed that the log2 fold values of Edn2 , Ccl20 , and Hk2 also increased in the nasal cavity after 3–6 hr. The results showed that the early response of immune cells occurred immediately after intranasal vaccination. In this study, we identified changes in gene expression that contribute to the activation of M cells and immunocompetent cells after intranasal vaccination of mice with antigen-CVP using a time-series analysis of spatial transcriptomics data. The results facilitated the identification of the cell types that are activated during the initial induction of nasal mucosal immunity.
Journal Article
Recombinant L. lactis vaccine LL-plSAM-WAE targeting four virulence factors provides mucosal immunity against H. pylori infection
2024
Background
Helicobacter pylori
(
H. pylori
) causes chronic gastric disease. An efficient oral vaccine would be mucosa-targeted and offer defense against colonization of invasive infection in the digestive system. Proteolytic enzymes and acidic environment in the gastrointestinal tract (GT) can, however, reduce the effectiveness of oral vaccinations. For the creation of an edible vaccine,
L. lactis
has been proposed as a means of delivering vaccine antigens.
Results
We developed a plSAM (pNZ8148-SAM) that expresses a multiepitope vaccine antigen SAM-WAE containing Urease, HpaA, HSP60, and NAP extracellularly (named LL-plSAM-WAE) to increase the efficacy of oral vaccinations. We then investigated the immunogenicity of LL-plSAM-WAE in Balb/c mice. Mice that received LL-plSAM-WAE or SAM-WAE with adjuvant showed increased levels of antibodies against
H. pylori
, including IgG and sIgA, and resulted in significant reductions in
H. pylori
colonization. Furthermore, we show that SAM-WAE and LL-plSAM-WAE improved the capacity to target the vaccine to M cells.
Conclusions
These findings suggest that recombinant
L. lactis
could be a promising oral mucosa vaccination for preventing
H. pylori
infection.
Journal Article
RANKL regulates differentiation of microfold cells in mouse nasopharynx-associated lymphoid tissue (NALT)
by
Iida, Junichiro
,
Hisamoto, Meri
,
Mutoh, Mami
in
Animals
,
Antigens
,
Antigens, Differentiation - immunology
2016
Murine nasopharynx-associated lymphoid tissue (NALT), located at the base of the nasal cavity, serves as a major site for the induction of mucosal immune responses against airway antigens. The follicle-associated epithelium (FAE) covering the luminal surface of NALT is characterized by the presence of microfold cells (M cells), which take up and transport luminal antigens to lymphocytes. Glycoprotein 2 (GP2) has recently been identified as a reliable marker for M cells in Peyer’s patches of the intestine. However, the expression of GP2 and other functional molecules in the M cells of NALT has not yet been examined. We have immunohistochemically detected GP2-expressing cells in the FAE of NALT and the simultaneous expression of other intestinal M-cell markers, namely Tnfaip2, CCL9, and Spi-B. These cells have been further identified as M cells because of their higher uptake capacity of luminal microbeads. Electron microscopic observations have shown that GP2-expressing cells on the FAE display morphological features typical of M cells: they possess short microvilli and microfolds on the luminal surface and are closely associated with intraepithelial lymphocytes. We have also found that the receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed by stromal cells underneath the FAE, which provides its receptor RANK. The administration of RANKL markedly increases the number of GP2⁺Tnfaip2⁺ cells on the NALT FAE and that of intestinal M cells. These results suggest that GP2⁺Tnfaip2⁺ cells in NALT are equivalent to intestinal M cells, and that RANKL-RANK signaling induces their differentiation.
Journal Article
An M cell-targeting recombinant L. lactis vaccine against four H. pylori adhesins
by
Wang, Xuequan
,
Liu, Jing
,
Li, Yonghong
in
Adhesins
,
Adhesins, Bacterial - genetics
,
Adhesins, Bacterial - metabolism
2024
The acidic environment and enzyme degradation lead to oral vaccines often having little immune effect. Therefore, it is an attractive strategy to study an effective and safe oral vaccine delivery system that can promote gastrointestinal mucosal immune responses and inhibit antigen degradation. Moreover, the antigens uptake by microfold cells (M cells) is the determining step in initiating efficient immune responses. Therefore, M cell-targeting is one promising approach for enhancing oral vaccine potency. In the present study, an M cell-targeting
L. lactis
surface display system (plSAM) was built to favor the multivalent epitope vaccine antigen (FAdE) to achieve effective gastrointestinal mucosal immunity against
Helicobacter pylori
. Therefore, a recombinant
Lactococcus lactic acid
vaccine (LL-plSAM-FAdE) was successfully prepared, and its immunological properties and protective efficacy were analyzed. The results showed that LL-plSAM-FAdE can secretively express the recombinant proteins SAM-FAdE and display the SAM-FAdE on the bacterial cell surface. More importantly, LL-plSAM-FAdE effectively promoted the phagocytosis and transport of vaccine antigen by M cells in the gastrointestinal tract of mice, and simulated high levels of cellular and humoral immune responses against four key
H. pylori
adhesins (Urease, CagL, HpaA, and Lpp20) in the gastrointestinal tract, thus enabling effective prevention of
H. pylori
infection and to some extent eliminating
H. pylori
already present in the gastrointestinal tract.
Key points
•
M-cell-targeting L. lactis surface display system LL- plSAM was designed
•
This system displays H. pylori vaccine-promoted phagocytosis and transport of M cell
•
A promising vaccine candidate for controlling H. pylori infection was verified
Journal Article
Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization
2021
Background
There is a strong need for non-invasive and patient-friendly delivery systems of protein drugs for long-term therapy. However, oral delivery of protein drugs is a big challenge due to many barriers including instability in the gastrointestinal (GI) tract and low permeability. To overcome the absorption barriers in GI tract and improve the patient compliance, this study aimed to develop an M cell targeted-nanocomposite delivery system of protein drugs.
Results
An aminoclay-protein core complex (AC-Ins) was prepared by using insulin as a model protein and then sequentially coated with
Ulex europaeus agglutinin
1 (UEA-1) for M-cell targeting and the pH sensitive polymer, Eudragit® L100 (EUAC-Ins). All nanoparticles were obtained with a high entrapment efficiency (> 90%) and their structural characteristics were confirmed by Fourier transform-infrared spectroscopy, energy dispersive X-ray spectroscopy, and circular dichroism. Among the developed nanoparticles, EUAC-Ins effectively suppressed drug release at pH 1.2, while rapidly released drugs at pH 6.8 due to dissolution of the outer coating layer. The conformational stability of insulin entrapped in EUAC-Ins was well maintained in the presence of proteolytic enzymes. Compared to free insulin, EUAC-Ins increased the membrane transport of insulin by 4.4-fold in M cells. In parallel, oral administration of EUAC-Ins in mice enhanced insulin uptake by 4.1-fold in the intestinal Peyer’s patches and 2.6-fold in intestinal epithelium tissues with normal villi, compared to free insulin. Orally administered EUAC-Ins decreased significantly the blood glucose level in diabetic mice, while the effect of oral insulin solution was negligible.
Conclusion
An M cell targeted-ternary nanocomposite system obtained by dual coating of the aminoclay-protein core complex with UEA-1 and a pH dependent polymer is promising as an effective oral protein delivery carrier.
Journal Article
Imbalance of the spindle-assembly checkpoint promotes spindle poison-mediated cytotoxicity with distinct kinetics
2019
Disrupting microtubule dynamics with spindle poisons activates the spindle-assembly checkpoint (SAC) and induces mitotic cell death. However, mitotic exit can occur prematurely without proper chromosomal segregation or cytokinesis by a process termed mitotic slippage. It remains controversial whether mitotic slippage increases the cytotoxicity of spindle poisons or the converse. Altering the SAC induces either mitotic cell death or mitotic slippage. While knockout of MAD2-binding protein p31
comet
strengthened the SAC and promoted mitotic cell death, knockout of TRIP13 had the opposite effect of triggering mitotic slippage. We demonstrated that mitotic slippage prevented mitotic cell death caused by spindle poisons, but reduced subsequent long-term survival. Weakening of the SAC also reduced cell survival in response to spindle perturbation insufficient for triggering mitotic slippage, of which mitotic exit was characterized by displaced chromosomes during metaphase. In either mitotic slippage or mitotic exit with missegregated chromosomes, cell death occurred only after one cell cycle following mitotic exit and increased progressively during subsequent cell cycles. Consistent with these results, transient inhibition of the SAC using an MPS1 inhibitor acted synergistically with spindle perturbation in inducing chromosome missegregation and cytotoxicity. The specific temporal patterns of cell death after mitotic exit with weakened SAC may reconcile the contradictory results from many previous studies.
Journal Article