Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,853 result(s) for "Melting points"
Sort by:
Healable and conductive sulfur iodide for solid-state Li–S batteries
Solid-state Li–S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles 1 – 3 . However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur 4 , 5 and the poor interfacial contacts induced by its large volume change during cycling 6 , 7 , impeding charge transfer among different solid components. Here we report an S 9.3 I molecular crystal with I 2 inserted in the crystalline sulfur structure, which shows a semiconductor-level electrical conductivity (approximately 5.9 × 10 −7  S cm −1 ) at 25 °C; an 11-order-of-magnitude increase over sulfur itself. Iodine introduces new states into the band gap of sulfur and promotes the formation of reactive polysulfides during electrochemical cycling. Further, the material features a low melting point of around 65 °C, which enables repairing of damaged interfaces due to cycling by periodical remelting of the cathode material. As a result, an Li–S 9.3 I battery demonstrates 400 stable cycles with a specific capacity retention of 87%. The design of this conductive, low-melting-point sulfur iodide material represents a substantial advancement in the chemistry of sulfur materials, and opens the door to the practical realization of SSLSBs. A conductive, low-melting-point and healable sulfur iodide material aids the practical realization of solid-state Li–S batteries, which have high theoretical energy densities and show potential in next-generation battery chemistry.
Liquid metal for high-entropy alloy nanoparticles synthesis
High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials 1 – 3 . However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications 4 , 5 . Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24–1.97 Å) and melting points (303–3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission–fusion behaviour during the alloying process. We discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, realizing the synthesis of high-entropy alloy nanoparticles.
Ligand-channel-enabled ultrafast Li-ion conduction
Li-ion batteries (LIBs) for electric vehicles and aviation demand high energy density, fast charging and a wide operating temperature range, which are virtually impossible because they require electrolytes to simultaneously have high ionic conductivity, low solvation energy and low melting point and form an anion-derived inorganic interphase 1 – 5 . Here we report guidelines for designing such electrolytes by using small-sized solvents with low solvation energy. The tiny solvent in the secondary solvation sheath pulls out the Li + in the primary solvation sheath to form a fast ion-conduction ligand channel to enhance Li + transport, while the small-sized solvent with low solvation energy also allows the anion to enter the first Li + solvation shell to form an inorganic-rich interphase. The electrolyte-design concept is demonstrated by using fluoroacetonitrile (FAN) solvent. The electrolyte of 1.3 M lithium bis(fluorosulfonyl)imide (LiFSI) in FAN exhibits ultrahigh ionic conductivity of 40.3 mS cm −1 at 25 °C and 11.9 mS cm −1 even at −70 °C, thus enabling 4.5-V graphite||LiNi 0.8 Mn 0.1 Co 0.1 O 2 pouch cells (1.2 Ah, 2.85 mAh cm −2 ) to achieve high reversibility (0.62 Ah) when the cells are charged and discharged even at −65 °C. The electrolyte with small-sized solvents enables LIBs to simultaneously achieve high energy density, fast charging and a wide operating temperature range, which is unattainable for the current electrolyte design but is highly desired for extreme LIBs. This mechanism is generalizable and can be expanded to other metal-ion battery electrolytes. An electrolyte design using small-sized fluoroacetonitrile solvents to form a ligand channel produces lithium-ion batteries simultaneously achieving high energy density, fast charging and wide operating temperature range, desirable features for batteries working in extreme conditions.
Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling
The Leidenfrost effect, namely the levitation of drops on hot solids 1 , is known to deteriorate heat transfer at high temperature 2 . The Leidenfrost point can be elevated by texturing materials to favour the solid–liquid contact 2 – 10 and by arranging channels at the surface to decouple the wetting phenomena from the vapour dynamics 3 . However, maximizing both the Leidenfrost point and thermal cooling across a wide range of temperatures can be mutually exclusive 3 , 7 , 8 . Here we report a rational design of structured thermal armours that inhibit the Leidenfrost effect up to 1,150 °C, that is, 600 °C more than previously attained, yet preserving heat transfer. Our design consists of steel pillars serving as thermal bridges, an embedded insulating membrane that wicks and spreads the liquid and U-shaped channels for vapour evacuation. The coexistence of materials with contrasting thermal and geometrical properties cooperatively transforms normally uniform temperatures into non-uniform ones, generates lateral wicking at all temperatures and enhances thermal cooling. Structured thermal armours are limited only by their melting point, rather than by a failure in the design. The material can be made flexible, and thus attached to substrates otherwise challenging to structure. Our strategy holds the potential to enable the implementation of efficient water cooling at ultra-high solid temperatures, which is, to date, an uncharted property. Structured thermal armours on the surface of a solid inhibit the Leidenfrost effect, even when heated to temperatures in excess of 1,000 °C, pointing the way towards new cooling strategies for high-temperature solids.
Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility
Metallic alloys containing multiple principal alloying elements have created a growing interest in exploring the property limits of metals and understanding the underlying physical mechanisms. Refractory high-entropy alloys have drawn particular attention due to their high melting points and excellent softening resistance, which are the two key requirements for high-temperature applications. Their compositional space is immense even after considering cost and recyclability restrictions, providing abundant design opportunities. However, refractory high-entropy alloys often exhibit apparent brittleness and oxidation susceptibility, which remain important challenges for their processing and application. Here, utilizing natural-mixing characteristics among refractory elements, we designed a Ti 38 V 15 Nb 23 Hf 24 refractory high-entropy alloy that exhibits >20% tensile ductility in the as-cast state, and physicochemical stability at high temperatures. Exploring the underlying deformation mechanisms across multiple length scales, we observe that a rare β′-phase plays an intriguing role in the mechanical response of this alloy. These results reveal the effectiveness of natural-mixing tendencies in expediting high-entropy alloy discovery. A refractory high-entropy alloy was designed with the composition chosen based on the natural-mixing characteristics among refractory elements; this alloy demonstrates good tensile ductility in the as-cast state and physicochemical stability at high temperatures.
Ab initio thermodynamics of liquid and solid water
Thermodynamic properties of liquid water as well as hexagonal (Ih) and cubic (Ic) ice are predicted based on density functional theory at the hybrid-functional level, rigorously taking into account quantum nuclear motion, anharmonic fluctuations, and proton disorder. This is made possible by combining advanced free-energy methods and state-of-the-art machine-learning techniques. The ab initio description leads to structural properties in excellent agreement with experiments and reliable estimates of the melting points of light and heavy water. We observe that nuclear-quantum effects contribute a crucial 0:2 meV/H₂O to the stability of ice Ih, making it more stable than ice Ic. Our computational approach is general and transferable, providing a comprehensive framework for quantitative predictions of ab initio thermodynamic properties using machine-learning potentials as an intermediate step.
Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells
Despite the rapid progress of organic solar cells based on non-fullerene acceptors, simultaneously achieving high power conversion efficiency and long-term stability for commercialization requires sustainable research effort. Here, we demonstrate stable devices by integrating a wide bandgap electron-donating polymer (namely PTzBI-dF) and two acceptors (namely L8BO and Y6) that feature similar structures yet different thermal and morphological properties. The organic solar cell based on PTzBI-dF:L8BO:Y6 could achieve a promising efficiency of 18.26% in the conventional device structure. In the inverted structure, excellent long-term thermal stability over 1400 h under 85 °C continuous heating is obtained. The improved performance can be ascribed to suppressed charge recombination along with appropriate charge transport. We find that the morphological features in terms of crystalline coherence length of fresh and aged films can be gradually regulated by the weight ratio of L8BO:Y6. Additionally, the occurrence of melting point decrease and reduced enthalpy in PTzBI-dF:L8BO:Y6 films could prohibit the amorphous phase to cluster, and consequently overcome the energetic traps accumulation aroused by thermal stress, which is a critical issue in high efficiency non-fullerene acceptors-based devices. This work provides insight into understanding non-fullerene acceptors-based organic solar cells for improved efficiency and stability. Energetic traps accumulation aroused by thermal stress is a critical issue in organic solar cells. Here, authors integrate a wide bandgap polymer and two non-fullerene acceptors with different thermal and morphological properties, realizing a promising efficiency of 18.26% and long device stability.
Ab initio phase diagram and nucleation of gallium
Elemental gallium possesses several intriguing properties, such as a low melting point, a density anomaly and an electronic structure in which covalent and metallic features coexist. In order to simulate this complex system, we construct an ab initio quality interaction potential by training a neural network on a set of density functional theory calculations performed on configurations generated in multithermal–multibaric simulations. Here we show that the relative equilibrium between liquid gallium, α -Ga, β -Ga, and Ga-II is well described. The resulting phase diagram is in agreement with the experimental findings. The local structure of liquid gallium and its nucleation into α -Ga and β -Ga are studied. We find that the formation of metastable β -Ga is kinetically favored over the thermodinamically stable α -Ga. Finally, we provide insight into the experimental observations of extreme undercooling of liquid Ga. Exploring nucleation processes of gallium by molecular simulation is extremely challenging due to its structural complexity. Here the authors demonstrate a neural network potential trained on a multithermal–multibaric DFT data for the study of the phase diagram of gallium in a wide temperature and pressure range.
A map of single-phase high-entropy alloys
High-entropy alloys have exhibited unusual materials properties. The stability of equimolar single-phase solid solution of five or more elements is supposedly rare and identifying the existence of such alloys has been challenging because of the vast chemical space of possible combinations. Herein, based on high-throughput density-functional theory calculations, we construct a chemical map of single-phase equimolar high-entropy alloys by investigating over 658,000 equimolar quinary alloys through a binary regular solid-solution model. We identify 30,201 potential single-phase equimolar alloys (5% of the possible combinations) forming mainly in body-centered cubic structures. We unveil the chemistries that are likely to form high-entropy alloys, and identify the complex interplay among mixing enthalpy, intermetallics formation, and melting point that drives the formation of these solid solutions. We demonstrate the power of our method by predicting the existence of two new high-entropy alloys, i.e. the body-centered cubic AlCoMnNiV and the face-centered cubic CoFeMnNiZn, which are successfully synthesized. The compositional space of potential high-entropy alloys is gigantic and difficult to explore efficiently. Here, the authors use high-throughput first-principles computations to predict what elements can mix to form high-entropy alloys, understanding of the factors favoring their formation.
Spontaneous symmetry breaking in polar fluids
Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmA AF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (N F ) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard N F compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter. Spontaneous symmetry breaking and emergent polar order are key to liquid crystal phase behaviour. This study reveals two new polar liquid states with lamellar structures, providing novel insights into electrical analogues of magnetic spin structures.