Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19,630
result(s) for
"Muscle Proteins - physiology"
Sort by:
Myomaker is a membrane activator of myoblast fusion and muscle formation
2013
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.
A muscle-specific membrane protein called myomaker is transiently expressed during myogenesis and is both necessary and sufficient to drive myoblast fusion
in vivo
and
in vitro
.
A muscle-building protein
The formation of skeletal muscle fibres depends on the fusion of myoblasts to produce multi-nucleated muscle fibres. Eric Olson and colleagues have identified and characterized a previously unknown skeletal-muscle-specific protein, myomaker, which is required for their fusion into multinucleated fibres. Genetic deletion of myomaker in mice completely abolished myoblast fusion, forced myomaker expression in muscle cells caused excessive fusion, and misexpression in fibroblasts conferred the ability to fuse with myoblasts. These findings provide new insight into the molecular mechanism of muscle formation, and the ability of myomaker to drive fusion of non-muscle cells with muscle cells suggests a novel strategy for enhancing muscle repair.
Journal Article
Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway
2013
During ageing skeletal muscles undergo a process of structural and functional remodelling that leads to sarcopenia, a syndrome characterized by loss of muscle mass and force and a major cause of physical frailty. To determine the causes of sarcopenia and identify potential targets for interventions aimed at mitigating ageing-dependent muscle wasting, we focussed on the main signalling pathway known to control protein turnover in skeletal muscle, consisting of the insulin-like growth factor 1 (IGF1), the kinase Akt and its downstream effectors, the mammalian target of rapamycin (mTOR) and the transcription factor FoxO. Expression analyses at the transcript and protein level, carried out on well-characterized cohorts of young, old sedentary and old active individuals and on mice aged 200, 500 and 800 days, revealed only modest age-related differences in this pathway. Our findings suggest that during ageing there is no downregulation of IGF1/Akt pathway and that sarcopenia is not due to FoxO activation and upregulation of the proteolytic systems. A potentially interesting result was the increased phosphorylation of the ribosomal protein S6, indicative of increased activation of mTOR complex1 (mTORC1), in aged mice. This result may provide the rationale why rapamycin treatment and caloric restriction promote longevity, since both interventions blunt activation of mTORC1; however, this change was not statistically significant in humans. Finally, genetic perturbation of these pathways in old mice aimed at promoting muscle hypertrophy via Akt overexpression or preventing muscle loss through inactivation of the ubiquitin ligase atrogin1 were found to paradoxically cause muscle pathology and reduce lifespan, suggesting that drastic activation of the IGF1-Akt pathway may be counterproductive, and that sarcopenia is accelerated, not delayed, when protein degradation pathways are impaired.
Journal Article
Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice
by
Christie, Christine K.
,
Nanda, Vivek
,
Tibboel, Dick
in
Abnormalities, Multiple - genetics
,
Animals
,
Autoantigens - genetics
2017
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal–contractile coupling.
Journal Article
Myasthenia gravis
by
Tzartos, Socrates
,
Palace, Jacqueline
,
Gilhus, Nils Erik
in
631/250/249/1313
,
631/378/1689
,
631/378/2632/1694
2019
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or other AChR-related proteins in the postsynaptic muscle membrane. Localized or general muscle weakness is the predominant symptom and is induced by the antibodies. Patients are grouped according to the presence of antibodies, symptoms, age at onset and thymus pathology. Diagnosis is straightforward in most patients with typical symptoms and a positive antibody test, although a detailed clinical and neurophysiological examination is important in antibody-negative patients. MG therapy should be ambitious and aim for clinical remission or only mild symptoms with near-normal function and quality of life. Treatment should be based on MG subgroup and includes symptomatic treatment using acetylcholinesterase inhibitors, thymectomy and immunotherapy. Intravenous immunoglobulin and plasma exchange are fast-acting treatments used for disease exacerbations, and intensive care is necessary during exacerbations with respiratory failure. Comorbidity is frequent, particularly in elderly patients. Active physical training should be encouraged.
Myasthenia gravis is an autoimmune disorder that is caused by autoantibodies against components of the neuromuscular junction. This Primer summarizes the epidemiology, mechanisms, diagnosis and treatment of myasthenia gravis and discusses the quality-of-life issues faced by patients.
Journal Article
Conserved Regulation of Cardiac Calcium Uptake by Peptides Encoded in Small Open Reading Frames
by
Niven, Jeremy E.
,
Cespedes, Miguel Angel
,
Bishop, Sarah A.
in
Amino Acid Sequence
,
Amino acids
,
Animals
2013
Small open reading frames (smORFs) are short DNA sequences that are able to encode small peptides of less than 100 amino acids. Study of these elements has been neglected despite thousands existing in our genomes. We and others previously showed that peptides as short as 11 amino acids are translated and provide essential functions during insect development. Here, we describe two peptides of less than 30 amino acids regulating calcium transport, and hence influencing regular muscle contraction, in the Drosophila heart. These peptides seem conserved for more than 550 million years in a range of species from flies to humans, in which they have been implicated in cardiac pathologies. Such conservation suggests that the mechanisms for heart regulation are ancient and that smORFs may be a fundamental genome component that should be studied systematically.
Journal Article
Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex
2012
Tissue‐specific transcriptional activators initiate differentiation towards specialized cell types by inducing chromatin modifications permissive for transcription at target loci, through the recruitment of SWItch/Sucrose NonFermentable (SWI/SNF) chromatin‐remodelling complex. However, the molecular mechanism that regulates SWI/SNF nuclear distribution in response to differentiation signals is unknown. We show that the muscle determination factor MyoD and the SWI/SNF subunit BAF60c interact on the regulatory elements of MyoD‐target genes in myoblasts, prior to activation of transcription. BAF60c facilitates MyoD binding to target genes and marks the chromatin for signal‐dependent recruitment of the SWI/SNF core to muscle genes. BAF60c phosphorylation on a conserved threonine by differentiation‐activated p38α kinase is the signal that promotes incorporation of MyoD–BAF60c into a Brg1‐based SWI/SNF complex, which remodels the chromatin and activates transcription of MyoD‐target genes. Our data support an unprecedented two‐step model by which pre‐assembled BAF60c–MyoD complex directs recruitment of SWI/SNF to muscle loci in response to differentiation cues.
The SWI/SNF chromatin‐remodelling complex regulates myogenic gene expression during muscle differentiation. BAF60c, a SWI/SNF subunit, recruits the muscle determinant transcription factor MyoD to target genes, facilitates chromatin remodelling and gene activation after phosphorylation by p38α MAP‐kinase.
Journal Article
Is titin a ‘winding filament’? A new twist on muscle contraction
by
Yeo, Sang Hoon
,
Nishikawa, Kiisa C.
,
Monroy, Jenna A.
in
Actin Cytoskeleton - chemistry
,
Actin Cytoskeleton - metabolism
,
Actin Cytoskeleton - physiology
2012
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Journal Article
Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development
2017
Despite the importance of cell fusion for mammalian development and physiology, the factors critical for this process remain to be fully defined, which has severely limited our ability to reconstitute cell fusion. Myomaker (
Tmem8c
) is a muscle-specific protein required for myoblast fusion. Expression of myomaker in fibroblasts drives their fusion with myoblasts, but not with other myomaker-expressing fibroblasts, highlighting the requirement of additional myoblast-derived factors for fusion. Here we show that
Gm7325
, which we name myomerger, induces the fusion of myomaker-expressing fibroblasts. Thus, myomaker and myomerger together confer fusogenic activity to otherwise non-fusogenic cells. Myomerger is skeletal muscle-specific and genetic deletion in mice results in a paucity of muscle fibres demonstrating its requirement for normal muscle formation. Myomerger deficient myocytes differentiate and harbour organized sarcomeres but are fusion-incompetent. Our findings identify myomerger as a fundamental myoblast fusion protein and establish a system that begins to reconstitute mammalian cell fusion.
Cellular fusion is fundamental for skeletal muscle development. Here the authors show that myomerger is expressed in myoblasts, is essential for myoblast fusion in mice, and in co-operation with myomaker confers fusogenic ability to non-fusogenic cells.
Journal Article
Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy
by
Krüger, Marcus
,
Mongillo, Marco
,
Franzoso, Mauro
in
Animals
,
Apoptosis - physiology
,
Autophagy
2014
Cardiomyocyte proteostasis is mediated by the ubiquitin/proteasome system (UPS) and autophagy/lysosome system and is fundamental for cardiac adaptation to both physiologic (e.g., exercise) and pathologic (e.g., pressure overload) stresses. Both the UPS and autophagy/lysosome system exhibit reduced efficiency as a consequence of aging, and dysfunction in these systems is associated with cardiomyopathies. The muscle-specific ubiquitin ligase atrogin-1 targets signaling proteins involved in cardiac hypertrophy for degradation. Here, using atrogin-1 KO mice in combination with in vivo pulsed stable isotope labeling of amino acids in cell culture proteomics and biochemical and cellular analyses, we identified charged multivesicular body protein 2B (CHMP2B), which is part of an endosomal sorting complex (ESCRT) required for autophagy, as a target of atrogin-1-mediated degradation. Mice lacking atrogin-1 failed to degrade CHMP2B, resulting in autophagy impairment, intracellular protein aggregate accumulation, unfolded protein response activation, and subsequent cardiomyocyte apoptosis, all of which increased progressively with age. Cellular proteostasis alterations resulted in cardiomyopathy characterized by myocardial remodeling with interstitial fibrosis, with reduced diastolic function and arrhythmias. CHMP2B downregulation in atrogin-1 KO mice restored autophagy and decreased proteotoxicity, thereby preventing cell death. These data indicate that atrogin-1 promotes cardiomyocyte health through mediating the interplay between UPS and autophagy/lysosome system and its alteration promotes development of cardiomyopathies.
Journal Article
Recovery in Soccer
by
Dupont, Gregory
,
Berthoin, Serge
,
Nédélec, Mathieu
in
Amino acids
,
Athletic Performance - physiology
,
Beverages
2013
In the formerly published part I of this two-part review, we examined fatigue after soccer matchplay and recovery kinetics of physical performance, and cognitive, subjective and biological markers. To reduce the magnitude of fatigue and to accelerate the time to fully recover after completion, several recovery strategies are now used in professional soccer teams. During congested fixture schedules, recovery strategies are highly required to alleviate post-match fatigue, and then to regain performance faster and reduce the risk of injury. Fatigue following competition is multifactorial and mainly related to dehydration, glycogen depletion, muscle damage and mental fatigue. Recovery strategies should consequently be targeted against the major causes of fatigue. Strategies reviewed in part II of this article were nutritional intake, cold water immersion, sleeping, active recovery, stretching, compression garments, massage and electrical stimulation. Some strategies such as hydration, diet and sleep are effective in their ability to counteract the fatigue mechanisms. Providing milk drinks to players at the end of competition and a meal containing high-glycaemic index carbohydrate and protein within the hour following the match are effective in replenishing substrate stores and optimizing muscle-damage repair. Sleep is an essential part of recovery management. Sleep disturbance after a match is common and can negatively impact on the recovery process. Cold water immersion is effective during acute periods of match congestion in order to regain performance levels faster and repress the acute inflammatory process. Scientific evidence for other strategies reviewed in their ability to accelerate the return to the initial level of performance is still lacking. These include active recovery, stretching, compression garments, massage and electrical stimulation. While this does not mean that these strategies do not aid the recovery process, the protocols implemented up until now do not significantly accelerate the return to initial levels of performance in comparison with a control condition. In conclusion, scientific evidence to support the use of strategies commonly used during recovery is lacking. Additional research is required in this area in order to help practitioners establish an efficient recovery protocol immediately after matchplay, but also for the following days. Future studies could focus on the chronic effects of recovery strategies, on combinations of recovery protocols and on the effects of recovery strategies inducing an anti-inflammatory or a pro-inflammatory response.
Journal Article