MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Myomaker is a membrane activator of myoblast fusion and muscle formation
Myomaker is a membrane activator of myoblast fusion and muscle formation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Myomaker is a membrane activator of myoblast fusion and muscle formation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Myomaker is a membrane activator of myoblast fusion and muscle formation
Myomaker is a membrane activator of myoblast fusion and muscle formation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Myomaker is a membrane activator of myoblast fusion and muscle formation
Myomaker is a membrane activator of myoblast fusion and muscle formation
Journal Article

Myomaker is a membrane activator of myoblast fusion and muscle formation

2013
Request Book From Autostore and Choose the Collection Method
Overview
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. A muscle-specific membrane protein called myomaker is transiently expressed during myogenesis and is both necessary and sufficient to drive myoblast fusion in vivo and in vitro . A muscle-building protein The formation of skeletal muscle fibres depends on the fusion of myoblasts to produce multi-nucleated muscle fibres. Eric Olson and colleagues have identified and characterized a previously unknown skeletal-muscle-specific protein, myomaker, which is required for their fusion into multinucleated fibres. Genetic deletion of myomaker in mice completely abolished myoblast fusion, forced myomaker expression in muscle cells caused excessive fusion, and misexpression in fibroblasts conferred the ability to fuse with myoblasts. These findings provide new insight into the molecular mechanism of muscle formation, and the ability of myomaker to drive fusion of non-muscle cells with muscle cells suggests a novel strategy for enhancing muscle repair.