Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
659 result(s) for "Proto-Oncogene Proteins c-myc - biosynthesis"
Sort by:
Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer
In the triple-negative subtype of breast cancer, for which treatment options are limited, overexpression of the MYC oncoprotein is associated with increased sensitivity to growth inhibition by fatty acid oxidation inhibitors, thus pointing to a new therapeutic strategy. Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor–, progesterone receptor– or human epidermal growth factor 2 receptor–positive (RP) breast cancer 1 , 2 . We and others have shown that MYC alters metabolism during tumorigenesis 3 , 4 . However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient–derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.
Resveratrol Inhibits Invasion and Metastasis of Colorectal Cancer Cells via MALAT1 Mediated Wnt/β-Catenin Signal Pathway
Resveratrol, extracted from Chinese herbal medicine Polygonum cuspidatum, is known to inhibit invasion and metastasis of human colorectal cancer (CRC), in which long non-coding Metastasis Associated Lung Adenocarcinoma Transcript 1 (RNA-MALAT1) also plays an important role. Using MALAT1 lentiviral shRNA and over-expression constructs in CRC derived cell lines, LoVo and HCT116, we demonstrated that the anti-tumor effects of resveratrol on CRC are through inhibiting Wnt/β-catenin signaling, thus the expression of its target genes such as c-Myc, MMP-7, as well as the expression of MALAT1. In detail, resveratrol down-regulates MALAT1, resulting in decreased nuclear localization of β-catenin thus attenuated Wnt/β-catenin signaling, which leads to the inhibition of CRC invasion and metastasis. This finding of ours surely provides important pre-clinical evidence supporting future use of resveratrol in prevention and treatment of CRC.
Regulation of translation by site-specific ribosomal RNA methylation
Ribosomes are complex ribozymes that interpret genetic information by translating messenger RNA (mRNA) into proteins. Natural variation in ribosome composition has been documented in several organisms and can arise from several different sources. A key question is whether specific control over ribosome heterogeneity represents a mechanism by which translation can be regulated. We used RiboMeth-seq to demonstrate that differential 2′-O-methylation of ribosomal RNA (rRNA) represents a considerable source of ribosome heterogeneity in human cells, and that modification levels at distinct sites can change dynamically in response to upstream signaling pathways, such as MYC oncogene expression. Ablation of one prominent methylation resulted in altered translation of select mRNAs and corresponding changes in cellular phenotypes. Thus, differential rRNA 2′-O-methylation can give rise to ribosomes with specialized function. This suggests a broader mechanism where the specific regulation of rRNA modification patterns fine tunes translation. Dynamic changes in 2′-O-methylation of rRNA in human cells lead to ribosome heterogeneity and result in altered translation of select mRNAs, correlating with changes in cellular phenotypes.
Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay
The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic the MYC amplification and PTEN loss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1–transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1–transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics.
cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions
Cancer cells are known to undergo metabolic reprogramming to sustain survival and rapid proliferation, however, it remains to be fully elucidated how oncogenic lesions coordinate the metabolic switch under various stressed condi- tions. Here we show that deprivation of glucose or glutamine, two major nutrition sources for cancer cells, dramat- ically activated serine biosynthesis pathway (SSP) that was accompanied by elevated cMyc expression. We further identified that cMyc stimulated SSP activation by transcriptionally upregulating expression of multiple SSP enzymes. Moreover, we demonstrated that SSP activation facilitated by cMye led to elevated glutathione (GSH) production, cell cycle progression and nucleic acid synthesis, which are essential for cell survival and proliferation especially un- der nutrient-deprived conditions. We further uncovered that phosphoserine phosphatase (PSPH), the final rate-lim- iting enzyme of the SSP pathway, is critical for cMyc-driven cancer progression both in vitro and in vivo, and impor- tantly, aberrant expression of PSPH is highly correlated with mortality in hepatocellular carcinoma (HCC) patients, suggesting a potential causal relation between this cMyc-regulated enzyme, or SSP activation in general, and cancer development. Taken together, our results reveal that aberrant expression of cMyc leads to the enhanced SSP activa- tion, an essential part of metabolic switch, to facilitate cancer progression under nutrient-deprived conditions.
The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC
Background Recent studies have revealed that circular RNAs (circRNAs) play significant roles in the occurrence and development of many kinds of cancers including breast cancer (BC). However, the potential functions of most circRNAs and the molecular mechanisms underlying progression of BC remain elusive. Method Here, Circular RNA microarray was executed in 4 pairs of breast cancer tissues and para-cancer tissues. The expression and prognostic significance of circACTN4 in BC cells and tissues were determined by qRT-PCR and in situ hybridization. Gain-and loss-of-function experiments were implemented to observe the impacts of circACTN4 on the growth, invasion, and metastasis of BC cells in vitro and in vivo. Mechanistically, chromatin immunoprecipitation, luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization and co-immunoprecipitation assays were executed. Results CircACTN4 was significantly upregulated in breast cancer tissues and cells, its expression was correlated with clinical stage and poor prognosis of patients with BC. Ectopic expression of circACTN4 strikingly facilitated the growth, invasion, and metastasis of breast cancer cells in vitro and in vivo. Whereas knockdown of circACTN4 revealed opposite roles. CircACTN4 was mainly distributed in the nucleus. Further mechanistic research proved that circACTN4 could competitively bind to far upstream element binding protein 1 (FUBP1) to prevent the combination between FUBP1 and FIR, thereby activating MYC transcription and facilitating tumor progression of breast cancer. Furthermore, we found that upstream transcription factor 2 (USF2) might promote the biogenesis of circACTN4. Conclusion Our findings uncover a pivotal mechanism that circACTN4 mediated by USF2 might interact with FUBP1 to promote the occurrence and development of breast cancer via enhancing the expression of MYC. CircACTN4 could be a novel potential target for diagnosis and treatment of breast cancer.
Hepatitis C virus-induced activation of β-catenin promotes c-Myc expression and a cascade of pro-carcinogenetic events
Chronic infection by hepatitis C virus (HCV) is a major risk factor for the onset and development of hepatocellular carcinoma (HCC), although the underlying mechanisms are unclear. The c-Myc oncogene contributes to the genesis of many types of cancers, including HCC, partly via the induction of genetic damage and the inhibition of the cellular response to genotoxic stress. Here, we show a previously undiscovered mechanistic link between HCV infection and enhanced c-Myc expression. c-Myc expression was augmented in non-tumoral liver tissues from HCV-infected individuals with or without HCC and in hepatocyte cell lines harboring an HCV replicon and the infectious HCV strain JFH1. Increased c-Myc expression was confirmed in vivo in a transgenic murine model expressing the entire HCV open reading frame, demonstrating a direct role for HCV protein expression in c-Myc induction. Mechanistically, activation of Akt by the HCV non-structural protein NS5A, and the subsequent stabilization of the transcription factor β-catenin, was demonstrated to be responsible for activation of the c-Myc promoter, and for increased c-Myc transcription. β-Catenin-dependent c-Myc expression in this context led to increased production of reactive oxygen species, mitochondrial perturbation, enhanced DNA damage and aberrant cell-cycle arrest. Together, these data provide a novel insight into the mechanisms involved in HCV-associated HCCs, strongly suggesting that c-Myc has a crucial contributory role in this process.
let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice
Purpose Down-regulation of let-7 microRNA (miRNA) plays an important role in the pathogenesis of lung cancer. k-Ras and c-Myc, two key oncogenes in lung cancer, have been found to be targeted by let-7 in vitro. However, the in vivo relevance of these findings is unknown. The aim of the present study is to determine the effect of let-7a, a member of let-7 family, on the growth of lung cancer in vivo and to investigate whether let-7-induced suppression of k-Ras and c-Myc is involved in lung cancer. Methods A549-let-7a cell line and A549-control cell line, two stable transfected cell lines over-expressing let-7a and the control miRNA, were established and preserved in our lab. A549, A549-control, and A549-let-7a cells were injected subcutaneously into nude mice, respectively. After 30 days, the mice were killed; the xenografts were excised and weighed. The expression of let-7a in tumor xenografts was assessed by real-time reverse transcription-PCR (RT-PCR). The expression of k-Ras and c-Myc in xenografts were determined by western blot and immunohistochemistry detection. Results Real-time RT-PCR showed the expression of let-7a was increased significantly in A549-let-7a cells-injected group, compared with A549-control cells-injected group and A549 cells-injected group (P < 0.01). In the xenografts of A549-let-7a cells-injected group, a significant depression in tumor weight (P < 0.05) and significant decrease of k-Ras and c-Myc protein were observed (P < 0.01), compared to A549 cells-injected group and A549-control cells-injected group. Conclusion Overexpression of let-7a can inhibit the growth of lung cancer transplanted subcutaneously in nude mice by suppression of k-Ras and c-Myc.
Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis
Constitutive photomorphogenesis 9 signalosome (CSN) consists of a total of eight subunits (CSN1-CSN8) in mammalian cells. CSN6 may promote carcinogenesis by positively regulating v-myc avian myelocytomatosis viral oncogene homolog (Myc) and MDM2 proto-oncogene stability, and is regarded as a potential target for cancer therapy. Quercetin has a substantial anticancer effect on various human cancer cells. The present study investigated the effects of quercetin on HT-29 human colorectal cancer cell viability, apoptosis and cell cycle arrest using an MTT assay, flow cytometry, transmission electron microscopy and western blotting. It was determined that quercetin inhibited HT-29 cell viability in a dose-dependent manner. Cell shrinkage, chromatin condensation and nuclear collapse were observed in the 50, 100 and 200 µM quercetin groups. The exposure of HT-29 cells to quercetin led to significant cell cycle arrest in the S-phase. Western blot analysis revealed that quercetin reduced the protein expression levels of phosphorylated-Akt and increased CSN6 protein degradation; therefore, affecting the expression levels of Myc, p53, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein. The overexpression of CSN6 reduced the effect of quercetin treatment on HT-29 cells, suggesting that quercetin-induced apoptosis may involve the Akt-CSN6-Myc signaling axis in HT-29 cells.
Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.