Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
317
result(s) for
"Respirovirus - genetics"
Sort by:
Prevalence Estimation and Genetic Characterization of Porcine Parainfluenza Virus 1 (PPIV-1) in Hungary and the First Report of the Virus in Slovakia
2024
In the last few decades, many new paramyxoviruses have been discovered, causing diverse, mostly respiratory diseases in animals and humans. The porcine parainfluenza virus 1 (PPIV-1, species Porcine respirovirus 1), which has been reported in many countries worldwide, was found in both healthy and clinically ill pigs showing respiratory signs. Here, we report the expected prevalence and genetic diversity of PPIV-1 in Hungarian pig herds and the detection in one Slovakian pig farm, which is the first report of evidence for the presence of the virus in the country. To estimate the prevalence in Hungary 211 oral fluid samples were collected from 23 large-scale swine herds in a systematic way and tested by real-time quantitative RT-PCR. The presence of the virus was detected in 10 of the 23 Hungarian farms (43%) included in our study. One hundred eighty-one nasal swab samples were collected cross-sectionally from three Hungarian and one Slovakian PPIV-1-positive herd and PPIV-1 was most prevalent in 6-week-old pigs on farms located in Hungary and in the 2-week-old pigs on the Slovakian farm. Phylogenetic analysis of three Hungarian and two Slovakian PPIV-1 F-gene sequences showed high-nucleotide identity (>93%) and all belonged to Clade I, together with the other European strains.
Journal Article
Metagenomic analysis of viral nucleic acid extraction methods in respiratory clinical samples
by
Lou, Xiuyu
,
Zhang, Yanjun
,
Li, Junping
in
Adenoviruses
,
Animal Genetics and Genomics
,
Biomedical and Life Sciences
2018
Background
Numerous protocols for viral enrichment and genome amplification have been created. However, the direct identification of viral genomes from clinical specimens using next-generation sequencing (NGS) still has its challenges. As a selected viral nucleic acid extraction method may determine the sensitivity and reliability of NGS, it is still valuable to evaluate the extraction efficiency of different extraction kits using clinical specimens directly.
Results
In this study, we performed qRT-PCR and viral metagenomic analysis of the extraction efficiency of four commonly used Qiagen extraction kits: QIAamp Viral RNA Mini Kit (VRMK), QIAamp MinElute Virus Spin Kit (MVSK), RNeasy Mini Kit (RMK), and RNeasy Plus Micro Kit (RPMK), using a mixed respiratory clinical sample without any pre-treatment. This sample contained an adenovirus (ADV), influenza virus A (Flu A), human parainfluenza virus 3 (PIV3), human coronavirus OC43 (OC43), and human metapneumovirus (HMPV). The quantity and quality of the viral extracts were significantly different among these kits. The highest threshold cycle(Ct)values for ADV and OC43 were obtained by using the RPMK. The MVSK had the lowest Ct values for ADV and PIV3. The RMK revealed the lowest detectability for HMPV and PIV3. The most effective rate of NGS data at 67.47% was observed with the RPMK. The other three kits ranged between 12.1–26.79% effectiveness rates for the NGS data. Most importantly, compared to the other three kits the highest proportion of non-host reads was obtained by the RPMK. The MVSK performed best with the lowest Ct value of 20.5 in the extraction of ADV, while the RMK revealed the best extraction efficiency by NGS analysis.
Conclusions
The evaluation of viral nucleic acid extraction efficiency is different between NGS and qRT-PCR analysis. The RPMK was most applicable for the metagenomic analysis of viral RNA and enabled more sensitive identification of the RNA virus genome in respiratory clinical samples. In addition, viral RNA extraction kits were also applicable for metagenomic analysis of the DNA virus. Our results highlighted the importance of nucleic acid extraction kit selection, which has a major impact on the yield and number of viral reads by NGS analysis. Therefore, the choice of extraction method for a given viral pathogen needs to be carefully considered.
Journal Article
Evaluation of Four Commercial Multiplex Molecular Tests for the Diagnosis of Acute Respiratory Infections
by
Vabret, Astrid
,
Andreoletti, Laurent
,
Renois, Fanny
in
Acute Disease
,
Adenoviridae - genetics
,
Adenoviridae - isolation & purification
2015
Acute Respiratory Infections (ARIs) are responsible for considerable morbidity and mortality worldwide. Documentation of respiratory specimens can help for an appropriate clinical management with a significant effect on the disease progress in patient, the antimicrobial therapy used and the risk of secondary spread of infection. Here, we compared the performances of four commercial multiplex kits used in French University Hospital diagnostic microbiology laboratories for the detection of ARI pathogens (i.e., the xTAG Respiratory Viral Panel Fast, RespiFinder SMART 22, CLART PneumoVir and Fast Track Diagnostics Respiratory Pathogen 33 kits). We used a standardised nucleic acids extraction protocol and a comprehensive comparative approach that mixed reference to well established real-time PCR detection techniques and analysis of convergent positive results. We tested 166 respiratory clinical samples and identified a global high degree of correlation for at least three of the techniques (xTAG, RespiFinder and FTD33). For these techniques, the highest Youden's index (YI), positive predictive (PPV) and specificity (Sp) values were observed for Core tests (e.g., influenza A [YI:0.86-1.00; PPV:78.95-100.00; Sp:97.32-100.00] & B [YI:0.44-1.00; PPV:100.00; Sp:100.00], hRSV [YI:0.50-0.99; PPV:85.71-100.00; Sp:99.38-100.00], hMPV [YI:0.71-1.00; PPV:83.33-100.00; Sp:99.37-100.00], EV/hRV [YI:0.62-0.82; PPV:93.33-100.00; Sp:94.48-100.00], AdV [YI:1.00; PPV:100.00; Sp:100.00] and hBoV [YI:0.20-0.80; PPV:57.14-100.00; Sp:98.14-100.00]). The present study completed an overview of the multiplex techniques available for the diagnosis of acute respiratory infections.
Journal Article
Emergence of swine influenza A virus, porcine respirovirus 1 and swine orthopneumovirus in porcine respiratory disease in Germany
by
Pohlmann, Anne
,
Lillie-Jaschniski, Kathrin
,
Stadler, Julia
in
emerging viruses
,
Germany - epidemiology
,
Hogs
2023
Respiratory disease is a significant economic issue in pig farming, with a complex aetiology that includes swine influenza A viruses (swIAV), which are common in European domestic pig populations. The most recent human influenza pandemic in 2009 showed swIAV's zoonotic potential. Monitoring pathogens and disease control are critical from a preventive standpoint, and are based on quick, sensitive, and specific diagnostic assays capable of detecting and distinguishing currently circulating swIAV in clinical samples. For passive surveillance, a set of multiplex quantitative reverse transcription real-time PCRs (mRT-qPCR) and MinION-directed sequencing was updated and deployed. Several lineages and genotypes of swIAV were shown to be dynamically developing, including novel reassortants between human pandemic H1N1 and the avian-derived H1 lineage of swIAV. Despite this, nearly 70% (842/1216) of individual samples from pigs with respiratory symptoms were swIAV-negative, hinting to different aetiologies. The complex and synergistic interactions of swIAV infections with other viral and bacterial infectious agents contribute to the aggravation of pig respiratory diseases. Using a newly developed mRT-qPCR for the combined detection of swIAV and the recently described porcine respirovirus 1 (PRV1) and swine orthopneumovirus (SOV) widespread co-circulation of PRV1 (19.6%, 238/1216 samples) and SOV (14.2%, 173/1216 samples) was evident. Because of the high incidence of PRV1 and SOV infections in pigs with respiratory disease, these viruses may emerge as new allies in the porcine respiratory disease syndrome.
Journal Article
Viral etiology of pneumonia among severely malnourished under-five children in an urban hospital, Bangladesh
by
Shahrin, Lubaba
,
Hassan, Md. Zakiul
,
Akhtar, Zubair
in
Adenoviridae - genetics
,
Adenoviridae - isolation & purification
,
Adenoviruses
2020
In Bangladesh, pneumonia has a higher mortality among malnourished children aged <5 years. Evaluating pneumonia etiology among malnourished children may help improve empiric treatment guidelines.
During April 2015-December 2017, we conducted a case-control study among severe acute malnourished (SAM) children aged <5 years admitted to the Dhaka hospital of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). We enrolled hospital admitted SAM children with clinical or radiological pneumonia as cases (during April 2015 to March 2017) and hospital admitted SAM children without any respiratory symptom in the past 10 days before admission as controls (during February 2016 to December 2017). We tested nasopharyngeal wash from both case and control for respiratory syncytial virus (RSV), human metapneumovirus (HMPV), influenza viruses, human parainfluenza viruses (HPIV), rhinovirus and adenovirus by singleplex real-time reverse transcriptase polymerase chain reaction. To identify the independent association of pneumonia with viral pathogens during February 2016 to March 2017, we used multivariable logistic regression for calculating adjusted odds ratios.
We enrolled 360 cases and 334 controls. For case and control the median age was 8 months (IQR: 5-13) and 11 months (IQR: 6-18) (p = 0.001) respectively. Weight/age Z-score was -4.3 (SD ±0.7) for cases and -4.1 (SD ±1.1) for controls (p = 0.01). Among cases 68% had both clinical and radiological pneumonia, 1% had clinical pneumonia and 31% had only radiological pneumonia. Respiratory virus detection was high in cases compared to controls [69.9% (251) vs. 44.8% (148), p = 0.0001]. The most frequently detected viruses among cases were rhinoviruses (79, 22.0%) followed by RSV (32, 8.9%), adenovirus (23, 6.4%), HPIV (22, 6.1%), influenza virus (16, 4.5%), and HMPV (16, 4.5%). Among the controls, rhinoviruses (82, 24.8%) were most commonly detected one followed by adenovirus (26,7.9%), HMPV (5, 1.5%), HPIV (4, 1.2%), RSV (3, 0.9%), and influenza virus (2, 0.6%). RSV (OR 13.1; 95% CI: 1.6, 106.1), influenza virus (OR 8.7; 95% CI: 1.0, 78.9), HPIV (3.8; 95% CI: 1.0, 14.8), and HMPV (2.7; 95% CI: 1.3, 5.5) were independently associated with pneumonia while compared between 178 cases and 174 controls.
Viral etiology of pneumonia in SAM children were mainly attributable to RSV, influenza, HPIV and HMPV. Our study findings may help in planning further studies targeting vaccines or drugs against common respiratory viruses responsible for pneumonia among SAM children.
Journal Article
Presence and Characterisation of Porcine Respirovirus 1 (PRV1) in Northern Italy
by
Lelli, Davide
,
Lavazza, Antonio
,
Salogni, Cristian
in
Animal diseases
,
Animals
,
Care and treatment
2024
Porcine Respirovirus 1 (PRV1) is an enveloped, single-stranded, negative-sense RNA virus belonging to the genus Respirovirus within the Paramyxoviridae family. Since its first detection in China in 2013, PRV1 has been identified in several American and European countries. Although its pathogenicity is uncertain, recent studies have suggested that it may play a role in the Porcine Respiratory Disease Complex (PRDC) because of its capacity to replicate in the upper and lower respiratory tracts. This study aimed to determine the spread of PRV1 in Northern Italy and the phylogeny of the isolates. Therefore, PRV1 was investigated using real-time RT-PCR in 902 samples collected from September 2022 to September 2023 from pigs with respiratory symptoms in North Italy. Fourteen (1.55%) samples tested as PRV1-positive. The full-length fusion (F) gene, which codifies for a major surface protein, was amplified and used for phylogenetic analysis to help carry out molecular epidemiological studies on this virus. In addition, swine influenza virus (SIV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections were detected in most of the PRV1-positive samples. In conclusion, we report the detection of PRV1 in Italy and discuss its potential role as a co-factor in causing the Porcine Respiratory Disease Complex.
Journal Article
New clinical and seasonal evidence of infections by Human Parainfluenzavirus
by
Zulema Pérez Martínez
,
Álvarez-Argüelles, Marta E
,
Rojo-Alba, Susana
in
Adults
,
Antiretroviral drugs
,
Cell culture
2018
Human Parainfluenzaviruses (PIVs) account for a significant proportion of viral acute respiratory infections (ARIs) in children, and are also associated with morbidity and mortality in adults, including nosocomial infections. This work aims to describe PIV genotypes and their clinical and epidemiological distribution. Between December 2016 and December 2017, 6121 samples were collected, and submitted to viral culture and genomic quantification, specifically Parainfluenza 1–4 (PIV1–4), Influenza A and B, Respiratory Syncytial Virus (RSV) A and B, Adenovirus, Metapneumovirus, Coronavirus, Rhinovirus, and Enterovirus. Normalized viral load, as (log10) copies/103 cells, was calculated as virus Ct, determined by multiple qRT-PCR, as a function of the Ct of β-globin. PIV was confirmed in 268 cases (4.37%), and linked to both upper and lower respiratory tract disease, being more frequent in children than in adults (5.23 and 2.43%, respectively). PIV1 and PIV3 were most common (31 and 32.5%, of total PIV positive samples, respectively), with distribution being similar in children and adults, as was viral load. PIV type was correlated with seasonality: PIV3 being more frequent in winter and spring, PIV1 in summer, and PIV 4 in fall. No correlation between vial load and clinical severity was found. Novel findings were that PIV viral load was higher in fall than in other seasons, and PIV4, classically linked to mild respiratory symptoms, was circulating, in children and adults, at all levels of symptoms throughout the year.
Journal Article
Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding
1999
A recent breakthrough in the field of nonsegmented negative strand RNA viruses (Mono‐ negavirales), including paramyxoviruses, is the establishment of a system to recover an infectious virus entirely from complementary DNA and hence allow reverse genetics. Mutations can now be introduced into viral genomes at will and the resulting phenotypes studied as long as the introduced mutations are not lethal. This technology is being successfully applied to answer outstanding questions regarding the roles of viral components in replication and their contribution to pathogenicity, which are difficult to address using conventional virology. For instance, how the paramyxovirus accessory proteins V and C contribute to actual viral replication and pathogenesis has remained unanswered since their first description more than 20 years ago. Using Sendai virus, which causes fatal pneumonia in mice, it has been shown that the V protein is completely dispensable for viral replication in cell cultures but encodes a luxury function required for pathogenesis in vivo. The Sendai virus C proteins were also defined to be nonessential gene products which greatly contributed to replication both in vitro and in vivo. It is also now possible to design live vaccines by introducing predetermined or plausible attenuating mutations. In addition, the use of paramyxoviruses to express foreign genes has also become feasible. Paramyxovirus reverse genetics is thus renovating our understanding of viral replication and pathogenesis and will further mark an era in recombinant technology for disease prevention and gene therapy. Copyright © 1999 John Wiley & Sons, Ltd.
Journal Article
Co-detection of Bordetella pertussis and other respiratory organisms in children hospitalised with lower respiratory tract infection
by
Dube, Felix S.
,
Hussey, Gregory D.
,
Zar, Heather J.
in
692/699/1785
,
692/699/255/1318
,
Bordetella pertussis
2020
Multiple potential pathogens are frequently co-detected among children with lower respiratory tract infection (LRTI). Evidence indicates that
Bordetella pertussis
has an important role in the aetiology of LRTI. We aimed to study the association between
B. pertussis
and other respiratory pathogens in children hospitalised with severe LRTI, and to assess clinical relevance of co-detection. Nasopharyngeal (NP) swabs and induced sputa (IS) were tested with a
B. pertussis
specific PCR; additionally, IS was tested for other pathogens using a multiplex PCR. We included 454 children, median age 8 months (IQR 4–18), 31 (7%) of whom tested positive for
B. pertussis
. Children with
B. pertussis
had more bacterial pathogens detected (3 versus 2; P < 0.001). While
B. pertussis
showed no association with most pathogens
,
it was independently associated with
Chlamydia pneumoniae, Mycoplasma pneumoniae
and parainfluenza viruses with adjusted risk ratios of 4.01 (1.03–15.64), 4.17 (1.42–12.27) and 2.13 (1.03–4.55), respectively. There was a consistent increased risk of severe disease with
B. pertussis.
Patterns indicated even higher risks when
B. pertussis
was co-detected with any of the three organisms although not statistically significant. Improving vaccine coverage against
B. pertussis
would impact not only the incidence of pertussis but also that of severe LRTI generally.
Journal Article
Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia
by
Bouhlel, Amira
,
Hannachi, Naila
,
Von Laer, Dorothee
in
Adenoviridae - genetics
,
Adenoviridae - pathogenicity
,
Biology and Life Sciences
2017
This study aimed to identify a broad spectrum of respiratory pathogens from hospitalized and not-preselected children with acute respiratory tract infections in the Farhat Hached University-hospital of Sousse, Tunisia. Between September 2013 and December 2014, samples from 372 children aged between 1 month and 5 years were collected, and tested using multiplex real-time RT-PCR by a commercial assay for 21 respiratory pathogens. In addition, samples were screened for the presence of Streptococcus pneumoniae 16S rDNA using real-time PCR. The viral distribution and its association with clinical symptoms were statistically analyzed. Viral pathogens were detected in 342 (91.93%) of the samples of which 28.76% were single positive and 63.17% had multiple infections. The most frequent detected viruses were rhinovirus (55.64%), respiratory syncytial virus A/B (33.06%), adenovirus (25.00%), coronavirus NL63, HKU1, OC43, and 229E (21.50%), and metapneumovirus A/B (16.12%). Children in the youngest age group (1-3 months) exhibited the highest frequencies of infection. Related to their frequency of detection, RSV A/B was the most associated pathogen with patient's demographic situation and clinical manifestations (p<0.05). Parainfluenza virus 1-4 and parechovirus were found to increase the risk of death (p<0.05). Adenovirus was statistically associated to the manifestation of gastroenteritis (p = 0.004). Rhinovirus infection increases the duration of oxygen support (p = 0.042). Coronavirus group was statistically associated with the manifestation of bronchiolitis (p = 0.009) and laryngitis (p = 0.017). Streptococcus pneumoniae DNA was detected in 143 (38.44%) of tested samples. However, only 53 samples had a concentration of C-reactive protein from equal to higher than 20 milligrams per liter, and 6 of them were single positive for Streptocuccus pneumoniae. This study confirms the high incidence of respiratory viruses in children hospitalized for acute respiratory tract infections in the Sousse area, Tunisia.
Journal Article