Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
83,498 result(s) for "Signal Transduction - physiology"
Sort by:
A supramodal accumulation-to-bound signal that determines perceptual decisions in humans
This study uses EEG in humans to isolate and track an evolving, domain-general decision signal, which varies with accumulated evidence, but is independent of overt actions. In theoretical accounts of perceptual decision-making, a decision variable integrates noisy sensory evidence and determines action through a boundary-crossing criterion. Signals bearing these very properties have been characterized in single neurons in monkeys, but have yet to be directly identified in humans. Using a gradual target detection task, we isolated a freely evolving decision variable signal in human subjects that exhibited every aspect of the dynamics observed in its single-neuron counterparts. This signal could be continuously tracked in parallel with fully dissociable sensory encoding and motor preparation signals, and could be systematically perturbed mid-flight during decision formation. Furthermore, we found that the signal was completely domain general: it exhibited the same decision-predictive dynamics regardless of sensory modality and stimulus features and tracked cumulative evidence even in the absence of overt action. These findings provide a uniquely clear view on the neural determinants of simple perceptual decisions in humans.
Lysophospholipid receptors
\"This state-of-the-art reference addresses lysophospholipids, a special kind of fat that has been found to have a growing number of receptors within the cell and that has important, natural roles in the body, being essential for normal reproduction, development, maturation and life. This book covers the biochemistry, interactions, and signaling of lysophospholipids as well as its potential for producing new therapies for a range of medically important human diseases. Bringing together current knowledge in lysophospholipid signaling, this represents a must-have book for all academic, industrial, and medical school and hospital libraries\"--Provided by publisher.
Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia
Cannabidiol is a component of marijuana that does not activate cannabinoid receptors, but moderately inhibits the degradation of the endocannabinoid anandamide. We previously reported that an elevation of anandamide levels in cerebrospinal fluid inversely correlated to psychotic symptoms. Furthermore, enhanced anandamide signaling let to a lower transition rate from initial prodromal states into frank psychosis as well as postponed transition. In our translational approach, we performed a double-blind, randomized clinical trial of cannabidiol vs amisulpride, a potent antipsychotic, in acute schizophrenia to evaluate the clinical relevance of our initial findings. Either treatment was safe and led to significant clinical improvement, but cannabidiol displayed a markedly superior side-effect profile. Moreover, cannabidiol treatment was accompanied by a significant increase in serum anandamide levels, which was significantly associated with clinical improvement. The results suggest that inhibition of anandamide deactivation may contribute to the antipsychotic effects of cannabidiol potentially representing a completely new mechanism in the treatment of schizophrenia.
On the Role of the Striatum in Response Inhibition
Stopping a manual response requires suppression of the primary motor cortex (M1) and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI) while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC) and right inferior frontal cortex (rIFC) during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC.
Intrinsically regulated learning is modulated by synaptic dopamine signaling
We recently provided evidence that an intrinsic reward-related signal—triggered by successful learning in absence of any external feedback—modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioral sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hr only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.
Unusual phototransduction via cross-motif signaling from G q to adenylyl cyclase in intrinsically photosensitive retinalganglion cells
Nonimage-forming vision in mammals is mediated primarily by melanopsin (OPN4)-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, melanopsin predominantly activates, via Gα q,11,14 , phospholipase C-β4 to open transient receptor 6 (TRPC6) and TRPC7 channels. In M2- and M4-ipRGCs, however, a prominent phototransduction mechanism involves the opening of hyperpolarization- and cyclic nucleotide-gated channels via cyclic nucleotide, although the upstream steps remain uncertain. We report here experiments, primarily on M4-ipRGCs, with photo-uncaging of cyclic nucleotides and virally expressed CNGA2 channels to conclude that the second messenger is cyclic adenosine monophosphate (cAMP) – very surprising considering that cyclic guanosine monophosphate (cGMP) is used in almost all cyclic nucleotide-mediated phototransduction mechanisms across the animal kingdom. We further found that the upstream G protein is likewise G q , which via its Gβγ subunits directly activates adenylyl cyclase (AC). Our findings are a demonstration in a native cell of a cross-motif GPCR signaling pathway from G q directly to AC with a specific function.
Helicobacter pylori CagA promotes Snail-mediated epithelial–mesenchymal transition by reducing GSK-3 activity
Cytotoxin-associated gene A (CagA) is an oncoprotein and a major virulence factor of H. pylori . CagA is delivered into gastric epithelial cells via a type IV secretion system and causes cellular transformation. The loss of epithelial adhesion that accompanies the epithelial–mesenchymal transition (EMT) is a hallmark of gastric cancer. Although CagA is a causal factor in gastric cancer, the link between CagA and the associated EMT has not been elucidated. Here, we show that CagA induces the EMT by stabilizing Snail, a transcriptional repressor of E-cadherin expression. Mechanistically we show that CagA binds GSK-3 in a manner similar to Axin and causes it to shift to an insoluble fraction, resulting in reduced GSK-3 activity. We also find that the level of Snail protein is increased in H. pylori infected epithelium in clinical samples. These results suggest that H. pylori CagA acts as a pathogenic scaffold protein that induces a Snail-mediated EMT via the depletion of GSK-3. Gastric cancer is associated with H. pylori infection and these tumours frequently show features of epithelial–mesenchymal transition (EMT). Here, the authors show that the H. pylori virulence protein, CagA, reduces the activity of GSK3b, which leads to the stabilization of Snail, a protein that induces EMT.
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
Notch signalling in angiogenesis Notch signalling coordinates angiogenesis by controlling the specification of endothelial cells into tip cells that lead the way in growing blood vessels and the stalk cells that follow. Michael Potente and colleagues have identified a previously unknown component in Notch signalling regulation in endothelial cells that may provide a mechanism for fine-tuning angiogenesis in response to metabolic requirements and angiogenic stress. They show that the metabolism- and redox-sensing deacetylase SIRT1 deacetylates the Notch1 intracellular domain directly, thereby controlling its stability and turnover and negatively modulating Notch signalling. Inactivation of SIRT1 impairs angiogenesis in zebrafish and mice. Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth 1 , 2 , 3 . Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation 2 , 3 , little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD + -dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo , inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.
PACAP38-induced migraine attacks are independent of CGRP signaling: a randomized controlled trial
Background Calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) are key pathogenic drivers of migraine. While CGRP has become the target of several mechanism-based therapies, less is known about PACAP38 signaling in migraine pathogenesis. Previous studies suggest that PACAP38 can modulate CGRP release, but it might also induce migraine attacks via CGRP-independent mechanisms. Whether PACAP38 signaling is independent of and parallel to CGRP signaling has implications for future therapeutic strategies. Here, we aimed to ascertain whether PACAP-38 can mediate migraine attacks independently of CGRP signaling by assessing the ability of eptinezumab to prevent PACAP38-induced migraine attacks. Methods In a double-blind, placebo-controlled, parallel-group study, we randomly allocated adults with migraine without aura to receive either an intravenous infusion of 300-mg eptinezumab or matching placebo (isotonic saline) over 30 min. Two hours post-infusion, all participants were administered PACAP38 intravenously at 10 pmol/kg/min for 20 min. The primary endpoint was the incidence of migraine attacks during the 24-hour observational period post-infusion of eptinezumab or placebo. Key secondary endpoints included between-group differences in incidence of headache, and area under the curve (AUC) for headache intensity scores, diameter of the superficial temporal artery (STA) and facial skin blood flow. Results A total of 38 participants were enrolled and completed the study. No difference was observed in the incidence of PACAP38-induced migraine attacks between the eptinezumab (10 [53%] of 19) and placebo (12 [63%] of 19) groups (Fisher’s exact test: P  = 0.74). Headache of any intensity was reported by 15 (79%) participants in the eptinezumab group, compared with 16 (84%) participants in the placebo group (Fisher’s exact test: P  > 0.99). The AUC for headache intensity scores did not differ between the two groups during the first 12 h post-infusion of PACAP38 (Mann-Whitney U-test: P  = 0.96). No differences were observed in AUC between the eptinezumab and placebo groups with respect to changes in STA diameter and facial skin blood flow ( P  > 0.05). No serious adverse events occurred. Conclusions Our results suggest that PACAP38 may mediate its signaling independently of CGRP in migraine pathogenesis. Therapies targeting PACAP signaling are thus a promising new avenue for treating migraine. Trial registration ClinicalTrials.gov, NCT05635604. Registered on November 15 2022. Graphical abstract
Role of TLR4 activation and signaling in bone remodeling, and afferent sprouting in serum transfer arthritis
Background In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis. Methods K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls. Paw swelling was scored and allodynia assessed by von Frey filaments. At day 28, synovial neural fibers were visualized with confocal microscopy and bone density assayed with microCT. Microglial activity and TLR4 dimerization in spinal cords were examined by immunofluorescence and flow cytometry. Results In the synovium, K/BxN injected WT male and female mice showed robust increases in calcitonin gene related-peptide (CGRP + ), tyrosine hydroxylase (TH) + and GAP43 + nerve fibers. Trabecular bone density by microCT was significantly decreased in K/BxN WT female but not in WT male mice. The number of osteoclasts increased in both sexes of WT mice, but not in Tlr4 -/- K/BxN mice. We used conditional strains with Cre drivers for monocytes/osteoclasts (lysozyme M), microglia (Tmem119 and Cx3CR1), astrocytes (GFAP) and sensory neurons (advillin) for Tlr4 f/f disruption. All strains developed similar arthritis scores after K/BxN serum injection with the exception being the Tlr4 Tmem119 mice which showed a reduction. Both sexes of Tlr4 Lyz2 , Tlr4 Tmem119 and Tlr4 Cx3cr1 mice displayed a partial reversal of the chronic pain phenotype but not in Tlr4 Avi l , and Tlr4 Gfap mice. WT K/BxN male mice showed increases in spinal Iba1, but not GFAP, compared to Tlr4 -/- male mice. To determine whether spinal TLR4 was indeed activated in the K/BxN mice, flow cytometry of lumbar spinal cords of WT K/BxN male mice was performed and revealed that TLR4 in microglia cells (CD11b + /TMEM119 + ) demonstrated dimerization (e.g. activation) and a characteristic increase in lipid rafts. Conclusion These results demonstrated a complex chronic allodynia phenotype associated with TLR4 in microglia and monocytic cell lineages, and a parallel spinal TLR4 activation. However, TLR4 is dispensable for the development of peripheral nerve sprouting in this model.