Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,544 result(s) for "Staphylococcus aureus - physiology"
Sort by:
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Methicillin-Resistant Staphylococcus aureus (MRSA) is a significant threat to human health. Additionally, biofilm forming bacteria becomes more tolerant to antibiotics and act as bacterial reservoir leading to chronic infection. In this study, we characterised the antibiotic susceptibility, biofilm production and sequence types (ST) of 74 randomly selected clinical isolates of S. aureus causing ocular infections. Antibiotic susceptibility revealed 74% of the isolates as resistant against one or two antibiotics, followed by 16% multidrug-resistant isolates (MDR), and 10% sensitive. The isolates were characterized as MRSA (n = 15), Methicillin-sensitive S. aureus (MSSA, n = 48) and oxacillin susceptible mecA positive S. aureus (OS-MRSA, n = 11) based on oxacillin susceptibility, mecA gene PCR and PBP2a agglutination test. All OS-MRSA would have been misclassified as MSSA on the basis of susceptibility test. Therefore, both phenotypic and genotypic tests should be included to prevent strain misrepresentation. In addition, in-depth studies for understanding the emerging OS-MRSA phenotype is required. The role of fem XAB gene family has been earlier reported in OS-MRSA phenotype. Sequence analysis of the fem XAB genes revealed mutations in fem  × (K3R, H11N, N18H and I51V) and fem B (L410F) genes. The fem XAB genes were also found down-regulated in OS-MRSA isolates in comparison to MRSA. In OS-MRSA isolates, biofilm formation is regulated by fibronectin binding proteins A & B. Molecular typing of the isolates revealed genetic diversity. All the isolates produced biofilm, however, MRSA isolates with strong biofilm phenotype represent a worrisome situation and may even result in treatment failure.
Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections
Background Foot infections are a major cause of morbidity in people with diabetes and the most common cause of diabetes-related hospitalization and lower extremity amputation. Staphylococcus aureus is by far the most frequent species isolated from these infections. In particular, methicillin-resistant S. aureus (MRSA) has emerged as a major clinical and epidemiological problem in hospitals. MRSA strains have the ability to be resistant to most β-lactam antibiotics, but also to a wide range of other antimicrobials, making infections difficult to manage and very costly to treat. To date, there are two fifth-generation cephalosporins generally efficacious against MRSA, ceftaroline and ceftobripole, sharing a similar spectrum. Biofilm formation is one of the most important virulence traits of S. aureus. Biofilm growth plays an important role during infection by providing defence against several antagonistic mechanisms. In this study, we analysed the antimicrobial susceptibility patterns of biofilm-producing S. aureus strains isolated from diabetic foot infections. The antibiotic minimum inhibitory concentration (MIC) was determined for ten antimicrobial compounds, along with the minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC), followed by PCR identification of genetic determinants of biofilm production and antimicrobial resistance. Results Results demonstrate that very high concentrations of the most used antibiotics in treating diabetic foot infections (DFI) are required to inhibit S. aureus biofilms in vitro, which may explain why monotherapy with these agents frequently fails to eradicate biofilm infections. In fact, biofilms were resistant to antibiotics at concentrations 10–1000 times greater than the ones required to kill free-living or planktonic cells. The only antibiotics able to inhibit biofilm eradication on 50 % of isolates were ceftaroline and gentamicin. Conclusions The results suggest that the antibiotic susceptibility patterns cannot be applied to biofilm established infections. Selection of antimicrobial therapy is a critical step in DFI and should aim at overcoming biofilm disease in order to optimize the outcomes of this complex pathology.
Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial
Staphylococcus aureus colonizes patients with atopic dermatitis (AD) and exacerbates disease by promoting inflammation. The present study investigated the safety and mechanisms of action of Staphylococcus hominis A9 ( Sh A9), a bacterium isolated from healthy human skin, as a topical therapy for AD. Sh A9 killed S. aureus on the skin of mice and inhibited expression of a toxin from S. aureus ( psm α) that promotes inflammation. A first-in-human, phase 1, double-blinded, randomized 1-week trial of topical Sh A9 or vehicle on the forearm skin of 54 adults with S. aureus -positive AD (NCT03151148) met its primary endpoint of safety, and participants receiving Sh A9 had fewer adverse events associated with AD. Eczema severity was not significantly different when evaluated in all participants treated with Sh A9 but a significant decrease in S. aureus and increased Sh A9 DNA were seen and met secondary endpoints. Some S. aureus strains on participants were not directly killed by Sh A9, but expression of mRNA for psm α was inhibited in all strains. Improvement in local eczema severity was suggested by post-hoc analysis of participants with S. aureus directly killed by Sh A9. These observations demonstrate the safety and potential benefits of bacteriotherapy for AD. First-in-human test of topical application of a commensal bacterium on skin of individuals with atopic dermatitis reduces colonization by proinflammatory Staphylococcus aureus .
The Staphylococcus aureus regulatory program in a human skin-like environment
Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed medium that strives to replicate the human skin surface environment and demonstrates roles for adhesins clumping factor A (ClfA), serine-rich repeat glycoprotein adhesin (SraP), and the fibronectin binding proteins (Fnbps) in human corneocyte adherence.
Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus
Methicillin-resistant Staphylococcus aureus (MRSA), are the most frequent cause of sepsis, which urgently demanding new drugs for treating infection. Two homologous insect CSαβ peptides-DLP2 and DLP4 from Hermetia illucens were firstly expressed in Pichia pastoris , with the yields of 873.5 and 801.3 mg/l, respectively. DLP2 and DLP4 displayed potent antimicrobial activity against Gram-positive bacteria especially MRSA and had greater potency, faster killing, and a longer postantibiotic effect than vancomycin. A 30-d serial passage of MRSA in the presence of DLP2/DLP4 failed to produce resistant mutants. Macromolecular synthesis showed that DLP2/DLP4 inhibited multi-macromolecular synthesis especially for RNA. Flow cytometry and electron microscopy results showed that the cell cycle was arrested at R-phase; the cytoplasmic membrane and cell wall were broken by DLP2/DLP4; mesosome-like structures were observed in MRSA. At the doses of 3‒7.5 mg/kg DLP2 or DLP4, the survival of mice challenged with MRSA were 80‒100%. DLP2 and DLP4 reduced the bacterial translocation burden over 95% in spleen and kidneys; reduced serum pro-inflammatory cytokines levels; promoted anti-inflammatory cytokines levels; and ameliorated lung and spleen injury. These data suggest that DLP2 and DLP4 may be excellent candidates for novel antimicrobial peptides against staphylococcal infections.
Modeling the Growth and Decline of Pathogen Effective Population Size Provides Insight into Epidemic Dynamics and Drivers of Antimicrobial Resistance
Nonparametric population genetic modeling provides a simple and flexible approach for studying demographic history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stochastic processes with stationary increments which may provide an unrealistic prior for epidemic histories which feature extended period of exponential growth or decline. We show that nonparametric models defined in terms of the growth rate of the effective population size can provide a more realistic prior for epidemic history. We propose a nonparametric autoregressive model on the growth rate as a prior for effective population size, which corresponds to the dynamics expected under many epidemic situations. We demonstrate the use of this model within a Bayesian phylodynamic inference framework. Our method correctly reconstructs trends of epidemic growth and decline from pathogen genealogies even when genealogical data are sparse and conventional skyline estimators erroneously predict stable population size. We also propose a regression approach for relating growth rates of pathogen effective population size and time-varying variables that may impact the replicative fitness of a pathogen. The model is applied to real data from rabies virus and Staphylococcus aureus epidemics. We find a close correspondence between the estimated growth rates of a lineage of methicillin-resistant S. aureus and population-level prescription rates of β-lactam antibiotics. The new models are implemented in an open source R package called skygrowth which is available at https://github.com/mrc-ide/skygrowth.
Dynamics of Biofilm Formation and the Interaction between Candida albicans and Methicillin-Susceptible (MSSA) and -Resistant Staphylococcus aureus (MRSA)
Polymicrobial biofilms are an understudied and a clinically relevant problem. This study evaluates the interaction between C. albicans, and methicillin- susceptible (MSSA) and resistant (MRSA) S. aureus growing in single- and dual-species biofilms. Single and dual species adhesion (90 min) and biofilms (12, 24, and 48 h) were evaluated by complementary methods: counting colony-forming units (CFU mL-1), XTT-reduction, and crystal violet staining (CV). The secretion of hydrolytic enzymes by the 48 h biofilms was also evaluated using fluorimetric kits. Scanning electron microscopy (SEM) was used to assess biofilm structure. The results from quantification assays were compared using two-way ANOVAs with Tukey post-hoc tests, while data from enzymatic activities were analyzed by one-way Welch-ANOVA followed by Games-Howell post hoc test (α = 0.05). C. albicans, MSSA and MRSA were able to adhere and to form biofilm in both single or mixed cultures. In general, all microorganisms in both growth conditions showed a gradual increase in the number of cells and metabolic activity over time, reaching peak values between 12 h and 48 h (ρ<0.05). C. albicans single- and dual-biofilms had significantly higher total biomass values (ρ<0.05) than single biofilms of bacteria. Except for single MRSA biofilms, all microorganisms in both growth conditions secreted proteinase and phospholipase-C. SEM images revealed extensive adherence of bacteria to hyphal elements of C. albicans. C. albicans, MSSA, and MRSA can co-exist in biofilms without antagonism and in an apparent synergistic effect, with bacteria cells preferentially associated to C. albicans hyphal forms.
Analysis of the Antimicrobial and Anti-Biofilm Activity of Natural Compounds and Their Analogues against Staphylococcus aureus Isolates
(1) Background: Staphylococcus aureus (S. aureus) is one of the most frequent causes of biofilm-associated infections. With the emergence of antibiotic-resistant, especially methicillin-resistant S. aureus (MRSA), there is an urgent need to discover novel inhibitory compounds against this clinically important pathogen. In this study, we evaluated the antimicrobial and anti-biofilm activity of 11 compounds, including phenyl propenes and phenolic aldehydes, eugenol, ferulic acid, sinapic acid, salicylaldehyde, vanillin, cinnamoyl acid, and aldehydes, against drug-resistant S. aureus isolates. (2) Methods: Thirty-two clinical S. aureus isolates were obtained from Alkhidmat Diagnostic Center and Blood Bank, Karachi, Pakistan, and screened for biofilm-forming potential, and susceptibility/resistance against ciprofloxacin, chloramphenicol, ampicillin, amikacin, cephalothin, clindamycin, streptomycin, and gentamicin using the Kirby-Bauer disk diffusion method. Subsequently, 5 representative clinical isolates were selected and used to test the antimicrobial and anti-biofilm potential of 11 compounds using both qualitative and quantitative assays, followed by qPCR analysis to examine the differences in the expression levels of biofilm-forming genes (ica-A, fnb-B, clf-A and cna) in treated (with natural compounds and their derivatives) and untreated isolates. (3) Results: All isolates were found to be multi-drug resistant and dominant biofilm formers. The individual Minimum Inhibitory Concentration (MIC) of natural compounds and their analogues ranged from 0.75–160 mg/mL. Furthermore, the compounds, Salicylaldehyde (SALI), Vanillin (VAN), α-methyl-trans-cinnamaldehyde (A-MT), and trans-4-nitrocinnamic acid (T4N) exhibited significant (15–92%) biofilm inhibition/reduction percentage capacity at the concentration of 1–10 mg/mL. Gene expression analysis showed that salicylaldehyde, α-methyl-trans-cinnamaldehyde, and α-bromo-trans-cinnamaldehyde resulted in a significant (p < 0.05) downregulation of the expression of ica-A, clf-A, and fnb-A genes compared to the untreated resistant isolate. (4) Conclusions: The natural compounds and their analogues used in this study exhibited significant antimicrobial and anti-biofilm activity against S. aureus. Biofilms persist as the main concern in clinical settings. These compounds may serve as potential candidate drug molecules against biofilm forming S. aureus.
Diversity of SCCmec Elements in Staphylococcus aureus as Observed in South-Eastern Germany
SCCmec elements are very important mobile genetic elements in Staphylococci that carry beta-lactam resistance genes mecA/mecC, recombinase genes and a variety of accessory genes. Twelve main types and a couple of variants have yet been described. In addition, there are also other SCC elements harbouring other markers. In order to subtype strains of methicillin-resistant S. aureus (MRSA) based on variations within their SCCmec elements, 86 markers were selected from published SCC sequences for an assay based on multiplexed primer extension reactions followed by hybridisation to the specific probes. These included mecA/mecC, fusC, regulatory genes, recombinase genes, genes from ACME and heavy metal resistance loci as well as several genes of unknown function. Hybridisation patterns for published genome or SCC sequences were theoretically predicted. For validation of the microarray based assay and for stringent hybridisation protocol optimization, real hybridization experiments with fully sequenced reference strains were performed modifying protocols until yielded the results were in concordance to the theoretical predictions. Subsequently, 226 clinical isolates from two hospitals in the city of Dresden, Germany, were characterised in detail. Beside previously described types and subtypes, a wide variety of additional SCC types or subtypes and pseudoSCC elements were observed as well as numerous composite elements. Within the study collection, 61 different such elements have been identified. Since hybridisation cannot recognise the localisation of target genes, gene duplications or inversions, this is a rather conservative estimate. Interestingly, some widespread epidemic strains engulf distinct variants with different SCCmec subtypes. Notable examples are ST239-MRSA-III, CC5-, CC22-, CC30-, and CC45-MRSA-IV or CC398-MRSA-V. Conversely, identical SCC elements were observed in different strains with SCCmec IVa being spread among the highest number of Clonal Complexes. The proposed microarray can help to distinguish isolates that appear similar or identical by other typing methods and it can be used as high-throughput screening tool for the detection of putative new SCC types or variants that warrant further investigation and sequencing. The high degree of diversity of SCC elements even within so-called strains could be helpful for epidemiological typing. It also raises the question on scale and speed of the evolution of SCC elements.
Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry
Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of S . aureus towards antibiotics are not representing the behaviour of biofilm-associated S . aureus , since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive S . aureus (MSSA) and 5 methicillin-resistant S . aureus (MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that S . aureus biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent S . aureus biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of S . aureus biofilms towards antibiotics in a fast and reliable way.