MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates
Journal Article

Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates

2019
Request Book From Autostore and Choose the Collection Method
Overview
Methicillin-Resistant Staphylococcus aureus (MRSA) is a significant threat to human health. Additionally, biofilm forming bacteria becomes more tolerant to antibiotics and act as bacterial reservoir leading to chronic infection. In this study, we characterised the antibiotic susceptibility, biofilm production and sequence types (ST) of 74 randomly selected clinical isolates of S. aureus causing ocular infections. Antibiotic susceptibility revealed 74% of the isolates as resistant against one or two antibiotics, followed by 16% multidrug-resistant isolates (MDR), and 10% sensitive. The isolates were characterized as MRSA (n = 15), Methicillin-sensitive S. aureus (MSSA, n = 48) and oxacillin susceptible mecA positive S. aureus (OS-MRSA, n = 11) based on oxacillin susceptibility, mecA gene PCR and PBP2a agglutination test. All OS-MRSA would have been misclassified as MSSA on the basis of susceptibility test. Therefore, both phenotypic and genotypic tests should be included to prevent strain misrepresentation. In addition, in-depth studies for understanding the emerging OS-MRSA phenotype is required. The role of fem XAB gene family has been earlier reported in OS-MRSA phenotype. Sequence analysis of the fem XAB genes revealed mutations in fem  × (K3R, H11N, N18H and I51V) and fem B (L410F) genes. The fem XAB genes were also found down-regulated in OS-MRSA isolates in comparison to MRSA. In OS-MRSA isolates, biofilm formation is regulated by fibronectin binding proteins A & B. Molecular typing of the isolates revealed genetic diversity. All the isolates produced biofilm, however, MRSA isolates with strong biofilm phenotype represent a worrisome situation and may even result in treatment failure.