Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
102,331 result(s) for "genetic algorithm"
Sort by:
Evolutionary algorithms and their applications to engineering problems
The main focus of this paper is on the family of evolutionary algorithms and their real-life applications. We present the following algorithms: genetic algorithms, genetic programming, differential evolution, evolution strategies, and evolutionary programming. Each technique is presented in the pseudo-code form, which can be used for its easy implementation in any programming language. We present the main properties of each algorithm described in this paper. We also show many state-of-the-art practical applications and modifications of the early evolutionary methods. The open research issues are indicated for the family of evolutionary algorithms.
A review on genetic algorithm: past, present, and future
In this paper, the analysis of recent advances in genetic algorithms is discussed. The genetic algorithms of great interest in research community are selected for analysis. This review will help the new and demanding researchers to provide the wider vision of genetic algorithms. The well-known algorithms and their implementation are presented with their pros and cons. The genetic operators and their usages are discussed with the aim of facilitating new researchers. The different research domains involved in genetic algorithms are covered. The future research directions in the area of genetic operators, fitness function and hybrid algorithms are discussed. This structured review will be helpful for research and graduate teaching.
Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches
Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging task as this requires training several different models for selecting the best amongst them along with substantial feature engineering to derive informative features and finding optimal time lags, a commonly used input features for time series models. Methods: Our approach uses machine learning and a long short-term memory (LSTM)-based neural network with various configurations to construct forecasting models for short to medium term aggregate load forecasting. The research solves above mentioned problems by training several linear and non-linear machine learning algorithms and picking the best as baseline, choosing best features using wrapper and embedded feature selection methods and finally using genetic algorithm (GA) to find optimal time lags and number of layers for LSTM model predictive performance optimization. Results: Using France metropolitan’s electricity consumption data as a case study, obtained results show that LSTM based model has shown high accuracy then machine learning model that is optimized with hyperparameter tuning. Using the best features, optimal lags, layers and training various LSTM configurations further improved forecasting accuracy. Conclusions: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area.
Flower pollination algorithm: a comprehensive review
Flower pollination algorithm (FPA) is a computational intelligence metaheuristic that takes its metaphor from flowers proliferation role in plants. This paper provides a comprehensive review of all issues related to FPA: biological inspiration, fundamentals, previous studies and comparisons, implementation, variants, hybrids, and applications. Besides, it makes a comparison between FPA and six different metaheuristics such as genetic algorithm, cuckoo search, grasshopper optimization algorithm, and others on solving a constrained engineering optimization problem. The experimental results are statistically analyzed with non-parametric Friedman test which indicates that FPA is superior more than other competitors in solving the given problem.
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
Due to the rapid growth in IT technology, digital data have increased availability, creating novel security threats that need immediate attention. An intrusion detection system (IDS) is the most promising solution for preventing malicious intrusions and tracing suspicious network behavioral patterns. Machine learning (ML) methods are widely used in IDS. Due to a limited training dataset, an ML-based IDS generates a higher false detection ratio and encounters data imbalance issues. To deal with the data-imbalance issue, this research develops an efficient hybrid network-based IDS model (HNIDS), which is utilized using the enhanced genetic algorithm and particle swarm optimization(EGA-PSO) and improved random forest (IRF) methods. In the initial phase, the proposed HNIDS utilizes hybrid EGA-PSO methods to enhance the minor data samples and thus produce a balanced data set to learn the sample attributes of small samples more accurately. In the proposed HNIDS, a PSO method improves the vector. GA is enhanced by adding a multi-objective function, which selects the best features and achieves improved fitness outcomes to explore the essential features and helps minimize dimensions, enhance the true positive rate (TPR), and lower the false positive rate (FPR). In the next phase, an IRF eliminates the less significant attributes, incorporates a list of decision trees across each iterative process, supervises the classifier’s performance, and prevents overfitting issues. The performance of the proposed method and existing ML methods are tested using the benchmark datasets NSL-KDD. The experimental findings demonstrated that the proposed HNIDS method achieves an accuracy of 98.979% on BCC and 88.149% on MCC for the NSL-KDD dataset, which is far better than the other ML methods i.e., SVM, RF, LR, NB, LDA, and CART.
Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem
Metaheuristic optimization techniques have successfully been used to solve the Optimal Power Flow (OPF) problem, addressing the shortcomings of mathematical optimization techniques. Two of the most popular metaheuristics are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The literature surrounding GA and PSO OPF is vast and not adequately organized. This work filled this gap by reviewing the most prominent works and analyzing the different traits of GA OPF works along seven axes, and of PSO OPF along four axes. Subsequently, cross-comparison between GA and PSO OPF works was undertaken, using the reported results of the reviewed works that use the IEEE 30-bus network to assess the performance and accuracy of each method. Where possible, the practices used in GA and PSO OPF were compared with literature suggestions from other domains. The cross-comparison aimed to act as a first step towards the standardization of GA and PSO OPF, as it can be used to draw preliminary conclusions regarding the tuning of hyper-parameters of GA and PSO OPF. The analysis of the cross-comparison results indicated that works using both GA and PSO OPF offer remarkable accuracy (with GA OPF having a slight edge) and that PSO OPF involves less computational burden.
Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model
Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities. Artificial Intelligence (AI) models have evidenced their capacity to solve dynamic, uncertain and complex tasks. The aim of this current study is to develop a hybrid artificial intelligence model called integrative Random Forest classifier with Genetic Algorithm optimization (RF-GA) for delay problem prediction. At first, related sources and factors of delay problems are identified. A questionnaire is adopted to quantify the impact of delay sources on project performance. The developed hybrid model is trained using the collected data of the previous construction projects. The proposed RF-GA is validated against the classical version of an RF model using statistical performance measure indices. The achieved results of the developed hybrid RF-GA model revealed a good resultant performance in terms of accuracy, kappa and classification error. Based on the measured accuracy, kappa and classification error, RF-GA attained 91.67%, 87% and 8.33%, respectively. Overall, the proposed methodology indicated a robust and reliable technique for project delay prediction that is contributing to the construction project management monitoring and sustainability.
Research on pipeline stress optimization based on genetic algorithm
Traditional chemical pipeline stress optimization aiming to reduce the stress to a reasonable level requires engineers to spend much efforts through a large number of trial calculations. In this paper, an intelligent optimization method based on multi-objective genetic algorithm was proposed to optimize the pipeline bracket arrangement under the mechanical requirement. It is found that the optimization is feasible and can significantly reduce the stress level of pipelines. Compared with the traditional design, this optimization method can provide more reasonable pipeline supports quickly and automatically.
Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm
Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity recognition (HAR) from wearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading sequence is challenging for the current recurrent, convolutional, or hybrid activity recognition models. The overall classification accuracy also gets affected by large size feature maps that these models generate. To this end, in this work, we have put forth a hybrid architecture for wearable sensor data-based HAR. We initially use Continuous Wavelet Transform to encode the time series of sensor data as multi-channel images. Then, we utilize a Spatial Attention-aided Convolutional Neural Network (CNN) to extract higher-dimensional features. To find the most essential features for recognizing human activities, we develop a novel feature selection (FS) method. In order to identify the fitness of the features for the FS, we first employ three filter-based methods: Mutual Information (MI), Relief-F, and minimum redundancy maximum relevance (mRMR). The best set of features is then chosen by removing the lower-ranked features using a modified version of the Genetic Algorithm (GA). The K-Nearest Neighbors (KNN) classifier is then used to categorize human activities. We conduct comprehensive experiments on five well-known, publicly accessible HAR datasets, namely UCI-HAR, WISDM, MHEALTH, PAMAP2, and HHAR. Our model significantly outperforms the state-of-the-art models in terms of classification performance. We also observe an improvement in overall recognition accuracy with the use of GA-based FS technique with a lower number of features. The source code of the paper is publicly available here https://github.com/apusarkar2195/HAR_WaveletTransform_SpatialAttention_FeatureSelection .
Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity
For machine learning algorithms, fine-tuning hyperparameters is a computational challenge due to the large size of the problem space. An efficient strategy for adjusting hyperparameters can be established with the use of the greedy search and Swarm intelligence algorithms. The Random Search and Grid Search optimization techniques show promise and efficiency for this task. The small population of solutions used at the outset, and the costly goal functions used by these searches, can lead to slow convergence or execution time in some cases. In this research, we propose using the machine learning model known as Support Vector Machine and optimizing it using four distinct algorithms—the Ant Bee Colony Algorithm, the Genetic Algorithm, the Whale Optimization, and the Particle Swarm Optimization—to evaluate the computational cost of SVM after hyper-tuning. Computational complexity comparisons of these optimization algorithms were performed to determine the most effective strategies for hyperparameter tuning. It was found that the Genetic Algorithm had a lower temporal complexity than other algorithms.