Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,336 result(s) for "telomeres"
Sort by:
Telomere dysfunction in ageing and age-related diseases
Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction. Here, we systematize a large body of evidence and propose a coherent perspective to recognize the broad contribution of telomeric dysfunction to human pathologies. Rossiello et al. review the contributions of telomere shortening and/or dysfunction to ageing and a broad spectrum of age-associated human diseases.
Differences in telomere length between patients with bipolar disorder and controls are influenced by lithium treatment
To assess the role of lithium treatment in the relationship between bipolar disorder (BD) and leukocyte telomere length (LTL). We compared LTL between 131 patients with BD, with or without a history of lithium treatment, and 336 controls. We tested the association between genetically determined LTL and BD in two large genome-wide association datasets. Patients with BD with a history lithium treatment showed longer LTL compared with never-treated patients (p = 0.015), and similar LTL compared with controls. Patients never treated with lithium showed shorter LTL compared with controls (p = 0.029). Mendelian randomization analysis showed no association between BD and genetically determined LTL. Our data support previous findings showing that long-term lithium treatment might protect against telomere shortening.
A Natural Astragalus-Based Nutritional Supplement Lengthens Telomeres in a Middle-Aged Population: A Randomized, Double-Blind, Placebo-Controlled Study
Telomeres are ribonucleoprotein structures that form a protective buffer at the ends of chromosomes, maintaining genomic integrity during the cell cycle. A decrease in average telomere length is associated with with age and with aging-related diseases such as cancer and cardiovascular disease. In this study, we conducted a randomized, double-blind, placebo-controlled trial over six months to compare the effects of the Astragalus-based supplement versus a placebo on telomere length (TL) in 40 healthy volunteers (mean age 56.1 ± 6.0 years). Twenty subjects received the supplement, and 20 received placebo capsules. All participants completed the study, and no adverse side effects were reported at six months. Subjects taking the Astragalus-based supplement exhibited significantly longer median TL (p = 0.01) and short TL (p = 0.004), along with a lower percentage of short telomeres, over the six-month period, while the placebo group showed no change in TL. This trial confirmed that the supplement significantly lengthens both median and short telomeres by increasing telomerase activity and reducing the percentage of short telomeres (<3 Kbp) in a statistically and possibly clinically significant manner. These results align with a previous open prospective trial, which found no toxicity associated with the supplement’s intake. These findings suggest that this Astragalus-based supplement warrants further investigation for its potential benefits in promoting health, extending life expectancy, and supporting healthy aging.
Association of TERC and OBFC1 Haplotypes with Mean Leukocyte Telomere Length and Risk for Coronary Heart Disease
To replicate the associations of leukocyte telomere length (LTL) with variants at four loci and to investigate their associations with coronary heart disease (CHD) and type II diabetes (T2D), in order to examine possible causal effects of telomere maintenance machinery on disease aetiology. Four SNPs at three loci BICD1 (rs2630578 GγC), 18q12.2 (rs2162440 GγT), and OBFC1 (rs10786775 CγG, rs11591710 AγC) were genotyped in four studies comprised of 2353 subjects out of which 1148 had CHD and 566 T2D. Three SNPs (rs12696304 CγG, rs10936601G>T and rs16847897 GγC) at the TERC locus were genotyped in these four studies, in addition to an offspring study of 765 healthy students. For all samples, LTL had been measured using a real-time PCR-based method. Only one SNP was associated with a significant effect on LTL, with the minor allele G of OBFC1 rs10786775 SNP being associated with longer LTL (β=0.029, P=0.04). No SNPs were significantly associated with CHD or T2D. For OBFC1 the haplotype carrying both rare alleles (rs10786775G and rs11591710C, haplotype frequency 0.089) was associated with lower CHD prevalence (OR: 0.77; 95% CI: 0.61-0.97; P= 0.03). The TERC haplotype GTC (rs12696304G, rs10936601T and rs16847897C, haplotype frequency 0.210) was associated with lower risk for both CHD (OR: 0.86; 95% CI: 0.75-0.99; P=0.04) and T2D (OR: 0.74; 95% CI: 0.61-0.91; P= 0.004), with no effect on LTL. Only the last association remained after adjusting for multiple testing. Of reported associations, only that between the OBFC1 rs10786775 SNP and LTL was confirmed, although our study has a limited power to detect modest effects. A 2-SNP OBFC1 haplotype was associated with higher risk of CHD, and a 3-SNP TERC haplotype was associated with both higher risk of CHD and T2D. Further work is required to confirm these results and explore the mechanisms of these effects.
Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length
Telomeres are part of chromatin structures containing repeated DNA sequences, which function as protective caps at the ends of chromosomes and prevent DNA degradation and recombination, thus ensuring the integrity of the genome. While telomere length (TL) can be genetically inherited, TL shortening has been associated with ageing and multiple xenobiotics and bioactive substances. TL has been characterised as a reliable biomarker for the predisposition to developing chronic pathologies and their progression. This narrative review aims to provide arguments in favour of including TL measurements in a complex prognostic and diagnostic panel of chronic pathologies and the importance of assessing the effect of different pharmacologically active molecules on the biology of telomeres. Medicines used in the management of cardiovascular diseases, diabetes, schizophrenia, hormone replacement therapy at menopause, danazol, melatonin, and probiotics have been studied for their positive protective effects against TL shortening. All these classes of drugs are analysed in the present review, with a particular focus on the molecular mechanisms involved.
Telomeres and telomerase: three decades of progress
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.In this Timeline article, Shay and Wright provide a historical account of progress in our understanding of telomeres (the ends of linear chromosomes) and telomerase (the primary enzyme that maintains and extends telomere lengths). Their perspective covers seminal moments from the early discoveries through to our latest understanding of the roles of telomeres and telomerase in ageing, diverse human diseases and gene regulation.
POT1 loss-of-function variants predispose to familial melanoma
David Adams, Julia Newton-Bishop, Timothy Bishop, Nicholas Hayward and colleagues identify loss-of-function variants in POT1 in several families with early onset multiple primary melanoma. They further show that these variants disrupt telomere binding by POT1 and are associated with increased telomere length. Deleterious germline variants in CDKN2A account for around 40% of familial melanoma cases 1 , and rare variants in CDK4 , BRCA2 , BAP1 and the promoter of TERT have also been linked to the disease 2 , 3 , 4 , 5 . Here we set out to identify new high-penetrance susceptibility genes by sequencing 184 melanoma cases from 105 pedigrees recruited in the UK, The Netherlands and Australia that were negative for variants in known predisposition genes. We identified families where melanoma cosegregates with loss-of-function variants in the protection of telomeres 1 gene ( POT1 ), with a proportion of family members presenting with an early age of onset and multiple primary tumors. We show that these variants either affect POT1 mRNA splicing or alter key residues in the highly conserved oligonucleotide/oligosaccharide-binding (OB) domains of POT1, disrupting protein-telomere binding and leading to increased telomere length. These findings suggest that POT1 variants predispose to melanoma formation via a direct effect on telomeres.
The Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function
Telomeric repeats, coated by the shelterin complex, prevent inappropriate activation of the DNA damage response at the ends of linear chromosomes. Shelterin has evolved distinct solutions to protect telomeres from different aspects of the DNA damage response. These solutions include formation of t-loops, which can sequester the chromosome terminus from DNA-end sensors and inhibition of key steps in the DNA damage response. While blocking the DNA damage response at chromosome ends, telomeres make wide use of many of its players to deal with exogenous damage and replication stress. This review focuses on the interplay between the end-protection functions and the response to DNA damage occurring inside the telomeric repeats, as well as on the consequences that telomere damage has on telomere structure and function.
The rate of telomere loss is related to maximum lifespan in birds
Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species. This article is part of the theme issue ‘Understanding diversity in telomere dynamics'.