Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,407
result(s) for
"viral RNA synthesis"
Sort by:
The dimeric conformation of PRRSV nsp1α is important for its ability to regulate viral RNA synthesis
2025
PRRSV nsp1α, the first viral protein translated in virus-infected cells, is released from viral polyprotein 1a through autocleavage. It plays important roles in viral replication, the suppression of the host innate immune response, and the modulation of cell-mediated immune responses. Nsp1α forms a homodimer in vitro. In this study, we aimed to elucidate the functional significance of nsp1α dimerization. Using the alanine scanning strategy, we identified valine132 and proline134 as critical residues for nsp1α dimerization. Using recombinant viruses expressing an additional FLAG-nsp1α mutant (V132A or P134A), we demonstrated that both the V132A and P134A mutations disrupted nsp1α dimerization in PRRSV-infected cells. When ectopically expressed, the V132A or P134A mutation did not affect the ability of nsp1α to antagonize host type I IFN production or degrade SLA-I molecules. Introducing V132A or P134A mutations into an HP‒PRRSV replicon system significantly interfered with the expression of a Gaussia luciferase reporter and viral proteins, suggesting that nsp1α dimerization is critical for viral replication. Using PRRSV reverse genetics, a recombinant virus carrying the V132A mutation (vV132A) was successfully rescued, while the P134A mutation was lethal. Compared with the wild-type virus, vV132A significantly attenuated growth and reduced the relative expression levels of subgenomic RNAs in MARC-145 cells. In BHK-21 cells transfected with full-length cDNA clones, the P134A mutation nearly completely blocked the synthesis of specific sgRNAs at both the minus- and positive-strand levels while maintaining sgRNA6 accumulation. Thus, nsp1α dimerization is essential for viral RNA synthesis and transcriptional regulation but appears to be dispensable for both the autoproteolytic activity and immune evasion functions of PCPα. This study not only enhances our fundamental knowledge of PRRSV biology but also establishes a foundation for developing targeted antiviral strategies against PRRSV and related arteriviruses.
Journal Article
The Interferon-Induced Protein with Tetratricopeptide Repeats Repress Influenza Virus Infection by Inhibiting Viral RNA Synthesis
2023
Influenza A virus (IAV) is an eight-segment negative-sense RNA virus and is subjected to gene recombination between strains to form novel strains, which may lead to influenza pandemics. Seasonal influenza occurs annually and causes great losses in public healthcare. In this study, we examined the role of interferon-induced protein with tetratricopeptide repeats 1 and 2 (IFIT1 and IFIT2) in influenza virus infection. Knockdown of IFIT1 or IFIT2 using a lentiviral shRNA increased viral nucleoprotein (NP) and nonstructural protein 1 (NS1) protein levels, as well as progeny virus production in A/Puerto Rico/8/34 H1N1 (PR/8)-infected lung epithelial A549 cells. Overexpression of IFIT1 or IFIT2 reduced viral NP and NS1 RNA and protein levels in PR/8-infected HEK293 cells. Overexpression of IFIT1 or IFIT2 also inhibited influenza virus infection of various H1N1 strains, including PR/8, A/WSN/1933, A/California/07/2009 and A/Oklahoma/3052/2009, as determined by a viral reporter luciferase assay. Furthermore, knockdown of IFIT1 or IFIT2 increased while overexpression of IFIT1 or IFIT2 decreased viral RNA, complementary RNA, and mRNA levels of NP and NS1, as well as viral polymerase activities. Taken together, our results support that both IFIT1 and -2 have anti-influenza virus activities by inhibiting viral RNA synthesis.
Journal Article
Evaluation of the Antiviral Activity of Tabamide A and Its Structural Derivatives against Influenza Virus
by
Im, Wonkyun Ronny
,
Shin, Soo Yong
,
Kim, Won-Keun
in
Antiviral drugs
,
Apoptosis
,
Human immunodeficiency virus
2023
Influenza viruses cause severe endemic respiratory infections in both humans and animals worldwide. The emergence of drug-resistant viral strains requires the development of new influenza therapeutics. Tabamide A (TA0), a phenolic compound isolated from tobacco leaves, is known to have antiviral activity. We investigated whether synthetic TA0 and its derivatives exhibit anti-influenza virus activity. Analysis of structure–activity relationship revealed that two hydroxyl groups and a double bond between C7 and C8 in TA0 are crucial for maintaining its antiviral action. Among its derivatives, TA25 showed seven-fold higher activity than TA0. Administration of TA0 or TA25 effectively increased survival rate and reduced weight loss of virus-infected mice. TA25 appears to act early in the viral infection cycle by inhibiting viral mRNA synthesis on the template-negative strand. Thus, the anti-influenza virus activity of TA0 can be expanded by application of its synthetic derivatives, which may aid in the development of novel antiviral therapeutics.
Journal Article
Coronavirus RNA Synthesis Takes Place within Membrane-Bound Sites
2021
Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.
Journal Article
Rabies Virus Infection Induces Microtubule Depolymerization to Facilitate Viral RNA Synthesis by Upregulating HDAC6
2017
Rabies virus (RABV) is the cause of rabies, and is associated with severe neurological symptoms, high mortality rate, and a serious threat to human health. Although cellular tubulin has recently been identified to be incorporated into RABV particles, the effects of RABV infection on the microtubule cytoskeleton remain poorly understood. In this study, we show that RABV infection induces microtubule depolymerization as observed by confocal microscopy, which is closely associated with the formation of the filamentous network of the RABV M protein. Depolymerization of microtubules significantly increases viral RNA synthesis, while the polymerization of microtubules notably inhibits viral RNA synthesis and prevents the viral M protein from inducing the formation of the filamentous network. Furthermore, the histone deacetylase 6 (HDAC6) expression level progressively increases during RABV infection, and the inhibition of HDAC6 deacetylase activity significantly decreases viral RNA synthesis. In addition, the expression of viral M protein alone was found to significantly upregulate HDAC6 expression, leading to a substantial reduction in its substrate, acetylated α-tubulin, eventually resulting in microtubule depolymerization. These results demonstrate that HDAC6 plays a positive role in viral transcription and replication by inducing microtubule depolymerization during RABV infection.
Journal Article
Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template
by
Cello, Jeronimo
,
Wimmer, Eckard
,
Paul, Aniko V.
in
Analysis
,
Animals
,
Antibodies, Monoclonal - immunology
2002
Full-length poliovirus complementary DNA (cDNA) was synthesized by assembling oligonucleotides of plus and minus strand polarity. The synthetic poliovirus cDNA was transcribed by RNA polymerase into viral RNA, which translated and replicated in a cell-free extract, resulting in the de novo synthesis of infectious poliovirus. Experiments in tissue culture using neutralizing antibodies and CD155 receptor-specific antibodies and neurovirulence tests in CD155 transgenic mice confirmed that the synthetic virus had biochemical and pathogenic characteristics of poliovirus. Our results show that it is possible to synthesize an infectious agent by in vitro chemical-biochemical means solely by following instructions from a written sequence.
Journal Article
Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation
by
Álvarez, Belén
,
Domínguez, Javier
,
Sobrino, Francisco
in
Animals
,
Antibodies, Viral - immunology
,
antivirals
2015
The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).
Journal Article
Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays
by
Keri, Ruth A.
,
Gulati, Neetu M.
,
Lam, Patricia
in
631/1647/350/354
,
639/925/357/354
,
Bioengineering
2016
The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.
Journal Article
Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements
by
Dotu, Ivan
,
Garcia-Martin, Juan Antonio
,
Lozano, Gloria
in
119/118
,
631/337/384
,
639/705/1042
2016
The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both
in vitro
and
in vivo
systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.
Journal Article
5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication
by
García-Sastre, Adolfo
,
Deyde, Varough
,
Sambhara, Suryaprakash
in
Animals
,
Avian flu
,
Avian influenza viruses
2010
Background
Emergence of drug-resistant strains of influenza viruses, including avian H5N1 with pandemic potential, 1918 and 2009 A/H1N1 pandemic viruses to currently used antiviral agents, neuraminidase inhibitors and M2 Ion channel blockers, underscores the importance of developing novel antiviral strategies. Activation of innate immune pathogen sensor Retinoic Acid Inducible Gene-I (RIG-I) has recently been shown to induce antiviral state.
Results
In the present investigation, using real time RT-PCR, immunofluorescence, immunoblot, and plaque assay we show that 5'PPP-containing single stranded RNA (5'PPP-RNA), a ligand for the intracytoplasmic RNA sensor, RIG-I can be used as a prophylactic agent against known drug-resistant avian H5N1 and pandemic influenza viruses. 5'PPP-RNA treatment of human lung epithelial cells inhibited replication of drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza viruses in a RIG-I and type 1 interferon dependant manner. Additionally, 5'PPP-RNA treatment also inhibited 2009 H1N1 viral replication
in vivo
in mice.
Conclusions
Our findings suggest that 5'PPP-RNA mediated activation of RIG-I can suppress replication of influenza viruses irrespective of their genetic make-up, pathogenicity, and drug-sensitivity status.
Journal Article