Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Perils of Embedding for Sampling Problems
by
Rieffel, Eleanor G
, Marshall, Jeffrey
, Andrea Di Gioacchino
in
Annealing
/ Embedding
/ Ground state
/ Hardware
/ Machine learning
/ Mapping
/ Optimization
/ Post-processing
/ Resampling
/ Sampling
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Perils of Embedding for Sampling Problems
by
Rieffel, Eleanor G
, Marshall, Jeffrey
, Andrea Di Gioacchino
in
Annealing
/ Embedding
/ Ground state
/ Hardware
/ Machine learning
/ Mapping
/ Optimization
/ Post-processing
/ Resampling
/ Sampling
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Paper
Perils of Embedding for Sampling Problems
2020
Request Book From Autostore
and Choose the Collection Method
Overview
Advances in techniques for thermal sampling in classical and quantum systems would deepen understanding of the underlying physics. Unfortunately, one often has to rely solely on inexact numerical simulation, due to the intractability of computing the partition function in many systems of interest. Emerging hardware, such as quantum annealers, provide novel tools for such investigations, but it is well known that studying general, non-native systems on such devices requires graph minor embedding, at the expense of introducing additional variables. The effect of embedding for sampling is more pronounced than for optimization; for optimization one is just concerned with the ground state physics, whereas for sampling one needs to consider states at all energies. We argue that as the system size or the embedding size grows, the chance of a sample being in the subspace of interest - the logical subspace - can be exponentially suppressed. Though the severity of this scaling can be lessened through favorable parameter choices, certain physical constraints (such as a fixed temperature and range of couplings) provide hard limits on what is currently feasible. Furthermore, we show that up to some practical and reasonable assumptions, any type of post-processing to project samples back into the logical subspace will bias the resulting statistics. We introduce a new such technique, based on resampling, that substantially outperforms majority vote, which is shown to fail quite dramatically at preserving distribution properties.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.