MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model
Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model
Paper

Improving accuracy of GPT-3/4 results on biomedical data using a retrieval-augmented language model

2023
Request Book From Autostore and Choose the Collection Method
Overview
Large language models (LLMs) have made significant advancements in natural language processing (NLP). Broad corpora capture diverse patterns but can introduce irrelevance, while focused corpora enhance reliability by reducing misleading information. Training LLMs on focused corpora poses computational challenges. An alternative approach is to use a retrieval-augmentation (RetA) method tested in a specific domain. To evaluate LLM performance, OpenAI's GPT-3, GPT-4, Bing's Prometheus, and a custom RetA model were compared using 19 questions on diffuse large B-cell lymphoma (DLBCL) disease. Eight independent reviewers assessed responses based on accuracy, relevance, and readability (rated 1-3). The RetA model performed best in accuracy (12/19 3-point scores, total=47) and relevance (13/19, 50), followed by GPT-4 (8/19, 43; 11/19, 49). GPT-4 received the highest readability scores (17/19, 55), followed by GPT-3 (15/19, 53) and the RetA model (11/19, 47). Prometheus underperformed in accuracy (34), relevance (32), and readability (38). Both GPT-3.5 and GPT-4 had more hallucinations in all 19 responses compared to the RetA model and Prometheus. Hallucinations were mostly associated with non-existent references or fabricated efficacy data. These findings suggest that RetA models, supplemented with domain-specific corpora, may outperform general-purpose LLMs in accuracy and relevance within specific domains. However, this evaluation was limited to specific questions and metrics and may not capture challenges in semantic search and other NLP tasks. Further research will explore different LLM architectures, RetA methodologies, and evaluation methods to assess strengths and limitations more comprehensively.

MBRLCatalogueRelatedBooks