MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Journal Article

Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge

2024
Request Book From Autostore and Choose the Collection Method
Overview
This paper presents the results of the 2022 Groundwater Time Series Modelling Challenge, where 15 teams from different institutes applied various data-driven models to simulate hydraulic-head time series at four monitoring wells. Three of the wells were located in Europe and one was located in the USA in different hydrogeological settings in temperate, continental, or subarctic climates. Participants were provided with approximately 15 years of measured heads at (almost) regular time intervals and daily measurements of weather data starting some 10 years prior to the first head measurements and extending around 5 years after the last head measurement. The participants were asked to simulate the measured heads (the calibration period), to provide a prediction for around 5 years after the last measurement (the validation period for which weather data were provided but not head measurements), and to include an uncertainty estimate. Three different groups of models were identified among the submissions: lumped-parameter models (three teams), machine learning models (four teams), and deep learning models (eight teams). Lumped-parameter models apply relatively simple response functions with few parameters, while the artificial intelligence models used models of varying complexity, generally with more parameters and more input, including input engineered from the provided data (e.g. multi-day averages). The models were evaluated on their performance in simulating the heads in the calibration period and in predicting the heads in the validation period. Different metrics were used to assess performance, including metrics for average relative fit, average absolute fit, fit of extreme (high or low) heads, and the coverage of the uncertainty interval. For all wells, reasonable performance was obtained by at least one team from each of the three groups. However, the performance was not consistent across submissions within each group, which implies that the application of each method to individual sites requires significant effort and experience. In particular, estimates of the uncertainty interval varied widely between teams, although some teams submitted confidence intervals rather than prediction intervals. There was not one team, let alone one method, that performed best for all wells and all performance metrics. Four of the main takeaways from the model comparison are as follows: (1) lumped-parameter models generally performed as well as artificial intelligence models, which means they capture the fundamental behaviour of the system with only a few parameters. (2) Artificial intelligence models were able to simulate extremes beyond the observed conditions, which is contrary to some persistent beliefs about these methods. (3) No overfitting was observed in any of the models, including in the models with many parameters, as performance in the validation period was generally only a bit lower than in the calibration period, which is evidence of appropriate application of the different models. (4) The presented simulations are the combined results of the applied method and the choices made by the modeller(s), which was especially visible in the performance range of the deep learning methods; underperformance does not necessarily reflect deficiencies of any of the models. In conclusion, the challenge was a successful initiative to compare different models and learn from each other. Future challenges are needed to investigate, for example, the performance of models in more variable climatic settings to simulate head series with significant gaps or to estimate the effect of drought periods.