MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes
Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes
Paper

Protection from viral rebound after therapeutic vaccination with an adjuvanted DNA vaccine is associated with SIV-specific polyfunctional CD8 T cells in the blood and mesenteric lymph nodes

2020
Request Book From Autostore and Choose the Collection Method
Overview
Abstract A therapeutic vaccine that induces lasting control of HIV infection has the potential to eliminate the need for lifelong adherence to antiretroviral therapy (ART). This study investigated the efficacy of a therapeutic DNA vaccine delivered with a novel combination of adjuvants and immunomodulators to augment T cell immunity in the blood and gut-associated lymphoid tissue. In SIV-infected rhesus macaques, a DNA vaccine delivered by intradermal electroporation and expressing SIV Env, Gag, and Pol, and a combination of adjuvant plasmids expressing the catalytic A1 subunit of E. coli heat labile enterotoxin (LTA1), IL-12, IL-33, retinaldehyde dehydrogenase 2 and the immunomodulators soluble PD-1 and soluble CD80, significantly enhanced the breadth and magnitude of Gag-specific IFN-γ T cell responses when compared to controls that were mock vaccinated or received the same DNA vaccine delivered by Gene Gun with a single adjuvant, the E. coli heat labile enterotoxin, LT. Notably, the DNA vaccine and adjuvant combination protected 3/5 animals from viral rebound, compared to only 1/4 mock vaccinated animals and 1/5 animals that received the DNA vaccine and LT. The lower viral burden among controllers during analytical treatment interruption significantly correlated with higher polyfunctional CD8+ T-cells (CD8+ T cells expressing 3 or more effector functions) in both mesenteric lymph nodes and blood measured during ART and analytical treatment interruption. Interestingly, controllers also had lower viral loads during acute infection and ART suggesting that inherent host-viral interactions induced prior to ART initiation likely influenced the response to therapeutic vaccination. These data indicate that gut mucosal immune responses combined with effective ART may play a key role in containing residual virus post-ART and highlight the need for therapeutic vaccines and adjuvants that can restore functional quality of peripheral and mucosal T cell responses before and during ART. Author Summary HIV has caused significant human disease and mortality since its emergence in the 1980s. Furthermore, although antiretroviral therapy (ART) effectively reduces viral replication, stopping ART leads to increased viral loads and disease progression in most HIV-infected people. A therapeutic vaccine could enable HIV-infected people to control their infection without ART, but none of the vaccines that were tested in clinical trials so far have induced long-lasting control of virus replication. Here, we used the SIV rhesus macaque model to test a therapeutic vaccine consisting of DNA expressing SIV proteins and a novel combination of adjuvants to boost virus-specific immune responses. We found that our vaccine strategy significantly enhanced SIV-specific T cell responses when compared to controls and protected 3/5 animals from viral rebound. We determined that lower levels of virus replication post-ART were associated with enhanced T cell immunity in the gut-draining lymph nodes and blood. Our study highlights the critical role of T cell immunity for control of SIV and HIV replication and demonstrates that a successful therapeutic vaccine for HIV will need to elicit potent T cell responses in both the blood and gut-associated tissues.