MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos
Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos
Journal Article

Acute cell volume regulation by Janus kinase 2-mediated sodium/hydrogen exchange activation develops at the late one-cell stage in mouse preimplantation embryos

2017
Request Book From Autostore and Choose the Collection Method
Overview
Early preimplantation embryos are extremely sensitive to dysregulation of cell volume, which can lead to developmental arrest. It was previously shown that mouse embryos at the two-cell stage respond to a cell volume decrease by quickly activating Na+/H+ exchange via a signaling mechanism that involves the tyrosine kinase Janus kinase 2 (JAK2). However, it was not known whether this mechanism is active at the one-cell stage, when embryos are most sensitive to perturbed cell volume. Na+/H+ exchanger activity elicited by an induced cell volume decrease was significantly lower at the mid one-cell stage than at the late one-cell stage or during the two-cell stage. This activity could be completely blocked by the broad specificity tyrosine kinase inhibitor genistein at either stage, but only at the two-cell stagewas there a substantial component of activity that was sensitive to low concentrations of the JAK2-selective inhibitors TG101348 or ruxolitinib. Western blots to detect active JAK2 phosphorylated on tyrosine Y1007/8 revealed that JAK2 became substantially phosphorylated in response to a cell volume decrease at the mid two-cell, but not mid one-cell stage. Such cell volume decrease-induced JAK2 phosphorylation appeared by the late one-cell stage. At least in part this appears to be due to an increase in total JAK2 protein at the late one-cell stage. Furthermore, TG101348 impaired maintenance of cell volume at the two-cell, but not mid one-cell, stages. Thus, cell volume homeostasis requiring Na+/H+ exchange signaled by JAK2 first becomes prominent during mouse embryonic development at the late one-cell stage. Summary Sentence The major mechanism of acute recovery from decreased cell volume in somatic cells, activation of sodium hydrogen exchanger NHE1 (SLC9A1) by the tyrosine kinase Janus kinase 2 (JAK2), first develops at the late one-cell stage of mouse embryo.